[1]霍海东,杨祝良,洪文涛.宁芜盆地娘娘山早白垩世黝方石响岩中黑云母逆反应边结构:岩浆混合触发火山喷发的矿物学证据[J].华东地质,2024,45(01):115-133.[doi:10.16788/j.hddz.32-1865/P.2024.01.009]
 HUO Haidong,YANG Zhuliang,HONG Wentao.Inverse reaction rim of biotite in early Cretaceous nosean phonolite of Niangniangshan, Ningwu Basin: mineralogical evidence of magma mixing triggered volcanic eruption[J].East China Geology,2024,45(01):115-133.[doi:10.16788/j.hddz.32-1865/P.2024.01.009]
点击复制

宁芜盆地娘娘山早白垩世黝方石响岩中黑云母逆反应边结构:岩浆混合触发火山喷发的矿物学证据()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
45
期数:
2024年01期
页码:
115-133
栏目:
第一届青年编委专辑(一)
出版日期:
2024-04-20

文章信息/Info

Title:
Inverse reaction rim of biotite in early Cretaceous nosean phonolite of Niangniangshan, Ningwu Basin: mineralogical evidence of magma mixing triggered volcanic eruption
作者:
霍海东12 杨祝良2 洪文涛2
1. 中国地质科学院, 北京 100091;
2. 中国地质调查局南京地质调查中心, 江苏 南京 210016
Author(s):
HUO Haidong12 YANG Zhuliang2 HONG Wentao2
1. Chinese Academy of Geological Sciences, Beijing 100091, China;
2. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China
关键词:
火山喷发机制岩浆混合黑云母逆反应边角闪石黝方石响岩宁芜盆地娘娘山
Keywords:
volcanic eruption mechanismmagma mixinginverse reaction rim of biotiteamphibolenosean phonoliteNiangniangshan in Ningwu Basin
分类号:
P571P578P581
DOI:
10.16788/j.hddz.32-1865/P.2024.01.009
摘要:
矿物的不平衡结构是岩浆混合、不平衡结晶以及岩浆-流体交代等过程的重要指标。在长江中下游宁芜盆地娘娘山破火山口的早白垩世娘娘山组黝方石响岩中,黑云母斑晶发育了罕见的逆反应边结构,即在黑云母边部出现由角闪石及辉石等镁铁质矿物组成的反应边,但对其成因长期以来缺少深入研究。文章通过详细的岩相学研究和电子探针分析等手段,查明宁芜盆地娘娘山组黝方石响岩中具逆反应边结构的黑云母具有核-幔-边结构,其核部为原生黑云母,靠近逆反应边的幔部为高温熔蚀再平衡结晶成因的黑云母,边部为角闪石。黑云母及角闪石的温压计算及其地球化学特征表明,黑云母结晶温度为807~862 ℃,压力为231~369 MPa;相比之下,“逆反应边”中的角闪石结晶温度为920~949 ℃,压力为271~309 MPa,其寄主岩浆化学组成类似于亚碱性系列的基性岩浆,较黑云母寄主岩浆更偏基性。黑云母与“逆反应边”中角闪石结晶的物理化学条件差异表明,这种特殊的“逆反应边”结构是早期碱性岩浆与晚期基性亚碱性岩浆混合的结果。矿物CSD计算表明,反应边的形成可能仅先于火山喷发一个月左右,暗示岩浆混合可能是导致火山喷发的重要诱因。
Abstract:
The disequilibrium texture of minerals can significantly indicate magmatic processes such as magma mixing, disequilibrium crystallization, and magma-fluid interaction. In the early Cretaceous nosean phonolite in the Niangniangshan Formation of the Ningwu Basin along the middle-lower reaches of Yangtze River. Biotite phenocrysts developed a rare inverse reaction rim texture, that is, a reaction rim composed of mafic minerals such as amphibole and pyroxene at the edge of biotite, but it’s been insufficient to in-depth research the origin of this texture. Based on detailed petrographic study and electron probe analysis, this paper identifies a core-mantle-rim texture of the inverse reaction rimmed biotite in the Niangniangshan Formation nosean phonolite, in which the core is primary biotite, the mantle near the inverse reaction rim is biotite formed by high-temperature melt erosion and re-equilibration crystallization, and the rim is amphibole. The temperature-pressure calculation and geochemical characteristics of biotite and amphibole indicate that the crystallization temperature and pressure of biotite is 807~862 ℃ and the crystallization pressure is 231~369 MPa; in contrast, the crystallization temperature of amphibole is 920~949 ℃ and the crystallization pressure is 271~309 MPa. The chemical composition of the host magma is similar to that of the subalkaline basic magma, and is more mafic than the biotite host magma; The difference in the physicochemical conditions of biotite and amphibole crystallization in the "inverse reaction rim" indicates that this special "inverse reaction rim" texture results from the mixing of early alkaline magma and late basic subalkaline magma. Meanwhile, the crystal size distribution (CSD) theory shows that the formation of the reaction rim may only precede the volcanic eruption by around one month, suggesting that magma mixing may be an important trigger for the volcanic eruption.

参考文献/References:

[1] WALKER J A, WILLIAMS S N, KALAMARIDES R I, et al. Shallow open-system evolution of basaltic magma beneath a subduction zone volcano:the Masaya Caldera Complex, Nicaragua[J]. Journal of Volcanology and Geothermal Research, 1993, 56(4):379-400.
[2] TOMIYA A, TAKAHASHI E. Evolution of the magma chamber beneath Usu volcano since 1663:a natural laboratory for observing changing phenocryst compositions and textures[J]. Journal of Petrology, 2005, 46(12):2395-2426.
[3] MOLLO S, GIACOMONI P P, COLTORTI M, et al. Reconstruction of magmatic variables governing recent Etnean eruptions:constraints from mineral chemistry and P-T-fO2-H2O modeling[J]. Lithos, 2015, 212:311-320.
[4] CIVETTA L, D ANTONIO M, ORSI G, et al. The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel:petrogenesis and characteristics of the mantle source region[J]. Journal of Petrology, 1998, 39(8):1453-1491.
[5] WEINBERG R F, LEITCH A M. Mingling in mafic magma chambers replenished by light felsic inputs:fluid dynamical experiments[J]. Earth and Planetary Science Letters, 1998, 157(1/2):41-56.
[6] GIONCADA A, MAZZUOLI R, MILTON A J. Magma mixing at Lipari (Aeolian Islands, Italy):insights from textural and compositional features of phenocrysts[J]. Journal of Volcanology and Geothermal Research, 2005, 145(1/2):97-118.
[7] WAIGHT T E, WIEBE R A, KROGSTAD E J. Isotopic evidence for multiple contributions to felsic magma chambers:gouldsboro granite, coastal maine[J]. Lithos, 2007, 93(3/4):234-247.
[8] BARNES C G, DUMOND G, YOSHINOBU A S, et al. Assimilation and crystal accumulation in a mid-crustal magma chamber:the Sausfjellet pluton, north-central Norway[J]. Lithos, 2004, 75(3/4):389-412.
[9] 邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004.DENG J F, LUO Z H, SU S G, et al. Petrogenesis, tectonic environment and mineralization[M]. Beijing:Geological Press, 2004.
[10] ANDERSON A T. Magma mixing:petrological process and volcanological tool[J]. Journal of Volcanology and Geothermal Research, 1976, 1(1):3-33.
[11] SPARKS S R J, SIGURDSSON H, WILSON L. Magma mixing:a mechanism for triggering acid explosive eruptions[J]. Nature, 1977, 267(5609):315-318.
[12] HUPPERT H E, SPARKS R S J, TURNER J S. Effects of volatiles on mixing in calc-alkaline magma systems[J]. Nature, 1982, 297(5867):554-557.
[13] MURPHY M D, SPARKS R S J, BARCLAY J, et al. The role of magma mixing in triggering the current eruption at the Soufriere Hills volcano, Montserrat, West Indies[J]. Geophysical Research Letters, 1998, 25(18):3433-3436.
[14] HAWKESWORTH C, GEORGE R, TURNER S, et al. Time scales of magmatic processes[J]. Earth and Planetary Science Letters, 2004, 218(1/2):1-16.
[15] KILGOUR G N, SAUNDERS K E, BLUNDY J D, et al. Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data[J]. Journal of Volcanology and Geothermal Research, 2014, 288:62-75.
[16] PAMUKCU A S, GUALDA G A R, ANDERSON J A T. Crystallization stages of the Bishop Tuff magma body recorded in crystal textures in pumice clasts[J]. Journal of Petrology, 2012, 53(3):589-609.
[17] BACON C R. Magmatic inclusions in silicic and intermediate volcanic rocks[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B6):6091-6112.
[18] FEELEY T C, DUNGAN M A. Compositional and dynamic controls on mafic-silicic magma interactions at continental arc volcanoes:evidence from Cordón El Guadal, Tatara-San Pedro Complex, Chile[J]. Journal of Petrology, 1996, 37(6):1547-1577.
[19] 杨献忠,周延,孙建东,等.斑晶斜长石环带结构及成因研究进展[J].华东地质,2022,43(4):415-427.YANG X Z,ZHOU Y,SUN J D,et al.Advances on the texture and genesis of phenocryst plagioclase zoning[J].East China Geology,2022,43(4):415-427.
[20] STRECK M J. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1):595-622.
[21] EICHELBERGER J C. Andesitic volcanism and crustal evolution[J]. Nature, 1978, 275(5675):21-27.
[22] EICHELBERGER J C. Vesiculation of mafic magma during replenishment of silicic magma reservoirs[J]. Nature, 1980, 288(5790):446-450.
[23] GREEN N L. Co-existing calcic amphiboles in calc-alkaline andesites:possible evidence of a zoned magma chamber[J]. Journal of Volcanology and Geothermal Research, 1982, 12(1/2):57-76.
[24] STIMAC J A, PEARCE T H. Textural evidence of mafic-felsic magma interaction in dacite lavas, Clear Lake, California[J]. American Mineralogist, 1992, 77(7/8):795-809.
[25] SAKUYAMA M. Petrological study of the Myoko and Kurohime volcanoes, Japan:crystallization sequence and evidence for magma mixing[J]. Journal of Petrology, 1981, 22(4):553-583.
[26] TSUCHIYAMA A. Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and origin of dusty plagioclase in andesites[J]. Contributions to Mineralogy and Petrology, 1985, 89(1):1-16.
[27] HALSORT S P, ROSE W I. Mineralogical relations and magma mixing in calc-alkaline andesites from Lake Atitlan, Guatemala[J]. Mineralogy and Petrology, 1991, 45(1):47-67.
[28] FEELEY T C, SHARP Z D. Chemical and hydrogen isotope evidence for in situ dehydrogenation of biotite in silicic magma chambers[J]. Geology, 1996, 24(11):1021-1024.
[29] VENEZKY D Y, RUTHERFORD M J. Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2 ka eruption at Mount Rainier[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B9):20069-20086.
[30] 洪文涛,王天刚,邢光福,等.矿物结构特征对岩浆混合过程的指示:以新西兰Ruapehu全新世安山岩中的辉石为例[J].高校地质学报,2015, 21(3):478-491.HONG W T, WANG T G, XING G F, et al. Implications of mineral textures for magma mixing:a case study of pyroxenes from Holocene ruapehu andesite, New Zealand[J]. Geological Journal of China Universities, 2015, 21(3):478-491.
[31] WALLACE P J, CARMICHAEL I S E. Petrology of Volcán Tequila, Jalisco, Mexico:disequilibrium phenocryst assemblages and evolution of the subvolcanic magma system[J]. Contributions to Mineralogy and Petrology, 1994, 117(4):345-361.
[32] 王德滋,涂紹雄.宁蕪地区中生代火山岩系的岩石学和岩石化学特征[J].南京大学学报(自然科学版),1963,13(1):71-92.WANG D Z, TU S X. Petrological and petrochemical characteristics of the Mesozoic volcanic rock series in the Ningwu area[J]. Journal of Nanjing University (Natural Science Edition), 1963, 13(1):71-92.
[33] 谢桂青,毛景文,李瑞玲,等.长江中下游鄂东南地区大寺组火山岩SHRIMP定年及其意义[J].科学通报, 2006,51(19):2283-2291.XIE G Q, MAO J W, LI R L, et al. SHRIMP dating of volcanic rocks of the Dasi Formation in the middle and lower reaches of the Yangtze River in southeastern Hubei and its significance[J]. Chinese Science Bulletin, 2006, 51(19):2283-2291.
[34] 常印佛.长江中下游地区铜铁成矿带[M].北京:地质出版社,1991.CHANG Y F. Copper-iron mineralization belt in the middle and lower reaches of the Yangtze River[M]. Beijing:Geological Press, 1991.
[35] 翟裕生,姚书振,林新多,等.长江中下游地区铁、铜等成矿规律研究[J].矿床地质,1992,11(1):1-12.ZHAI Y S, YAO S Z, LIN X D, et al. Metallogenic regularity of iron and copper deposits in the middle and lower valley of the yangtze river[J].Mineral Deposits, 1992, 11(1):1-12.
[36] 闫峻.长江中下游-大别造山带中生代火山岩特征及成因[J].华东地质,2022,43(4):375-390.YAN J.Characteristics and petrogenesis of the Mesozoic volcanic rocks from the Middle-Lower Yangtze River Belt and the Dabie Orogen[J].East China Geology,2022,43(4):375-390.
[37] PAN Y, DONG P. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999, 15(4):177-242.
[38] MAO J, WANG Y, LEHMANN B, et al. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 2006, 29(3/4):307-324.
[39] 周涛发,范裕,袁峰,等.宁芜(南京-芜湖)盆地火山岩的年代学及其意义[J].中国科学(地球科学),2011,41(7):960-971.ZHOU T F, FAN Y, YUAN F, et al. Geochronology and significance of volcanic rocks in the Ning-Wu Basin of China[J]. Science China Earth Sciences, 2011, 41(7):960-971.
[40] YU J, CHEN Y, MAO J, et al. Review of geology, alteration and origin of iron oxide-apatite deposits in the Cretaceous Ningwu basin, Lower Yangtze River Valley, eastern China:implications for ore genesis and geodynamic setting[J]. Ore Geology Reviews, 2011, 43(1):170-181.
[41] 张旗,简平,刘敦一,等.宁芜火山岩的锆石SHRIMP定年及其意义[J].中国科学(D辑),2003,33(4):309-314.ZHANG Q, JIAN P, LIU D Y, et al. Zircon SHRIMP dating of Ningwu volcanic rocks and its significance[J]. Science in China (Series D), 2003, 33(4):309-314.
[42] 闫峻,刘海泉,宋传中,等.长江中下游繁昌-宁芜火山盆地火山岩锆石U-Pb年代学及其地质意义[J].科学通报,2009,54(16):2895-2904.YAN J, LIU H Q, SONG C Z, et al. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications[J]. Chinese Science Bulletin, 2009, 54(16):2895-2904.
[43] 薛怀民,董树文,马芳.长江中下游地区庐(江)-枞(阳)和宁(南京)-芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石U-Pb年龄[J].岩石学报,2010,26(9):2653-2664.XUE H M, DONG S W, MA F. Zircon U-Pb SHRIMP ages of sub-volcanic bodies related with porphyritic Fe-deposits in the Luzong and Ningwu basins, Middle and Lower Yangtze River Reaches, Central China[J]. Acta Petrologica Sinica, 2010, 26(9):2653-2664.
[44] 陶奎元,吴岩,黄光昭,等.娘娘山古火山口的构造和岩相特征[J].地质学报,1978(1):40-53.TAO K Y, WU Y, HUANG G Z, et al. The structural and facies characteristics of Niangniangshan paleocaldera[J]. Acta Geologica Sinica, 1978(1):40-53.
[45] LEAKE B E, WOOLLEY A R, ARPS C E S, et al. Nomenclature of amphiboles:report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names[J]. The Canadian Mineralogist, 1997, 35(1):219-246.
[46] FOSTER M D. Interpretation of the composition of trioctahedral micas[R]. Geological Survey Professional Paper, 1960, 354B:11-49.
[47] HENRY D J, GUIDOTTI C V, THOMSON J A. The Ti-saturation surface for low-to-medium pressure metapelitic biotites:implications for geothermometry and Ti-substitution mechanisms[J]. American mineralogist, 2005, 90(2/3):316-328.
[48] RIDOLFI F, PUERINI M, RENZULLI A, et al. The magmatic feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by texture, mineralogy and thermobarometry of the 2002 erupted products[J]. Journal of Volcanology and Geothermal Research, 2008, 176(1):94-106.
[49] LI X Y, ZHANG C. Machine learning thermobarometry for biotite-bearing magmas[J]. Journal of Geophysical Research:Solid Earth, 2022, 127(9):1-23.
[50] UCHIDA E, ENDO S, MAKINO M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J]. Resource Geology, 2007, 57(1):47-56.
[51] WONES D R, EUCSTER H P. Stability of biotite:experiment, theory, and application[J]. American Mineralogist:Journal of Earth and Planetary Materials, 1965, 50(9):1228-1272.
[52] WONES D R. Significance of the assemblage titanite+magnetite+quartz in granitic rocks[J]. American Mineralogist, 1989, 74(7/8):744-749.
[53] HAMMARSTROM J M, ZEN E. Aluminum in hornblende:an empirical igneous geobarometer[J]. American mineralogist, 1986, 71(11/12):1297-1313.
[54] HOLLISTER L S, GRISSOM G C, PETERS E K, et al. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons[J]. American mineralogist, 1987, 72(3/4):231-239.
[55] SCHMIDT M W. Amphibole composition in tonalite as a function of pressure:an experimental calibration of the Al-in-hornblende barometer[J]. Contributions to Mineralogy and Petrology, 1992, 110(2/3):304-310.
[56] ANDERSON J L, SMITH D R. The effects of temperature and fO2 on the Al-in-hornblende barometer[J]. American mineralogist, 1995, 80(5/6):549-559.
[57] RIDOLFI F, RENZULLI A, PUERINI M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas:an overview, new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology, 2010, 160:45-66.
[58] 姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,1984,4(3):1-9.JIANG C Y, AN S Y. On chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significance[J]. Journal of Mineralogy and Petrology, 1984, 4(3):1-9.
[59] WANG R, RICHARDS J P, HOU Z, et al. Increasing magmatic oxidation state from paleocene to miocene in the eastern Gangdese Belt, Tibet:implication for collision-related porphyry Cu-Mo±Au mineralization[J]. Economic Geology, 2014, 109(7):1943-1965.
[60] PALIN R M, WHITE R W, GREEN E C R, et al. High-grade metamorphism and partial melting of basic and intermediate rocks[J]. Journal of Metamorphic Geology, 2016, 34(9):871-892.
[61] 魏春景,关晓,董杰.基性岩高温-超高温变质作用与TTG质岩成因[J].岩石学报,33(5):1381-1404.WEI C J, GUAN X, DONG J. HT-UHT metamorphism of metabasites and the petrogenesis of TTGs[J]. Acta Petrologica Sinica, 2017, 33(5):1381-1404.
[62] BATEMAN R, MARTíN M P, CASTRO A. Mixing of cordierite granitoid and pyroxene gabbro, and fractionation, in the Santa Olalla tonalite (Andalucia)[J]. Lithos, 1992, 28(2):111-131.
[63] 常丽华,曹林,高福红.火成岩鉴定手册[M].北京:地质出版社,2009.CHANG L H, CAO L, GAO F H. Igneous rock identification manual[M]. Beijing:Geological Press, 2009.
[64] 张树业,常丽华,康维国,等.岩石中的成矿迹象[M].北京:地质出版社,1989.ZHANG S Y, CHANG L H, KANG W G, et al. Signs of mineralization in rocks[M]. Beijing:Geological Press, 1989.
[65] CHEN W T, ZHOU M F. Hydrothermal alteration of magmatic zircon related to NaCl-rich brines:diffusion-reaction and dissolution-reprecipitation processes[J]. American Journal of Science, 2017, 317(2):177-215.
[66] NACHIT H, IBHI A, OHOUD M B. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites[J]. Comptes Rendus Geoscience, 2005, 337(16):1415-1420.
[67] 周作侠.湖北丰山洞岩体成因探讨[J].岩石学报,1986,2(1):59-70.ZHOU Z X. The origin of intrusive mass in Fengshandong, Hubei province[J]. Acta Petrologica Sinica, 1986, 2(1):59-70.
[68] 丁孝石.西藏中南部花岗岩类中云母矿物标型特征及其地质意义[C].中国地质科学院矿床地质研究所文集,1988(21):33-50.DING X S. Mica mineral typomorphic characteristics and geological significance in granitoids of central-southern Tibet[C]. Proceedings of the Institute of Mineral Deposit Geology, Chinese Academy of Geological Sciences, 1988(21):33-50.
[69] LEAKE B E. On aluminous and edenitic hornblendes[J]. Mineralogical Magazine, 1971, 38(296):389-407.
[70] 杜杨松,秦新龙,田世洪.安徽铜陵铜官山矿区中生代岩浆-热液过程:来自岩石包体及其寄主岩的证据[J].岩石学报,2004,20(2):339-350.DU Y S, QIN X L, TIAN S H. Mesozoic magmatic to hydrothermal process in the Tongguanshan ore field, Tongling, Anhui Province, China:evidence from xenoliths and their hosts[J]. Acta Petrologica Sinica, 2004, 20(2):339-350.
[71] 庞阿娟,李胜荣,张华锋,等.湖北鸡笼山岩体主要矿物的成因矿物学意义[J].矿物岩石,2012,32(3):25-33.PANG A J, LI S R, ZHANG H F, et al. Genetic mineralogy significance of major minerals of Jilongshan Pluton, Hubei Province[J]. Journal of Mineralogy and Petrology, 2012, 32(3):25-33.
[72] 杜杨松,曹毅,袁万明,等.安徽沿江地区中生代碰撞后到造山后岩浆活动和壳幔相互作用——来自火山-侵入杂岩和岩石包体的证据[J].岩石学报,2007, 23(6):1294-1302.DU Y S, CAO Y, YUAN W M, et al. Mesozoic post-collisional to postorogenic magmatic activities and crustal interaction with mantle along the Yangtze River, Anhui province:evidence from volcanic-intrusive complexes and xenoliths[J]. Acta Petrologica Sinica, 2007, 23(6):1294-1302.
[73] 董树文,马立成,刘刚,等.论长江中下游成矿动力学[J].地质学报,2011,85(5):612-625.DONG S W, MA L C, LIU G, et al. On dynamics of the metallogenic belt of Middle-Lower reaches of Yangtze River, Eastern China[J]. Acta Geologica Sinica, 2011, 85(5):612-625.
[74] TANG Y J, ZHANG H F, YING J F, et al. Rapid eruption of the Ningwu volcanics in eastern China:response to Cretaceous subduction of the Pacific plate[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(6):1703-1721.
[75] 陈光远.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1987.CHEN G Y. Genetic mineralogy and prospecting mineralogy[M]. Chongqing:Chongqing Press, 1987.02.
[76] 薛君治,白学让,陈武.高等学校教材成因矿物学[M].武汉:武汉地质学院出版社,1986:10.XUE J Z, BAI X R, CHEN W. College textbook genetic mineralogy[M]. Wuhan:Wuhan Institute of Geology Press, 1986:10
[77] COLTORTI M, BONADIMAN C, FACCINI B, et al. Amphiboles from suprasubduction and intraplate lithospheric mantle[J]. Lithos, 2007, 99(1/2):68-84.
[78] MOLINA J F, SCARROW J H, MONTERO P G, et al. High-Ti amphibole as a petrogenetic indicator of magma chemistry:evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia[J]. Contributions to Mineralogy and Petrology, 2009, 158:69-98.
[79] 薛怀民,陶奎元.宁芜地区中生代火山岩系列的新认识及其地质意义[J].地质学刊,1989(4):9-14.XUE H M, TAO K Y. New view on the Mesozoic volcanic sequences in Ning-Wu[J]. Journal of Geology,1989(4):9-14.
[80] 王丽娟,王汝成,于津海,等.宁芜盆地火山-侵入岩的时代、地球化学特征及其地质意义[J].地质学报,2014,88(7):1247-1272.WANG L J, WANG R C, YU J H, et al. Geochrology, geochemistry of volcanic-intrusive rocks in the Ningwu basin and its geological implications[J]. Acta Geologica Sinica, 2014, 88(7):1247-1272.
[81] 陈长健,陈斌,王志强.宁芜地区中生代富钾和富钠火山岩的源区特征:岩石学和地球化学证据[J].岩石学报,2017,33(2):415-439.CHEN C J, CHEN B, WANG Z Q. Petrology of the Mesozoic magmatic rocks in Ningwu area:insights from in-situ zircon Hf isotope and Nd-Sr isotopes, East China[J]. Acta Petrologica Sinica, 2017, 33(2):415-439.
[82] 薛怀民,马芳,曹光跃.长江中下游地区晚中生代橄榄玄粗岩系列火山岩:年代学格架,地球化学特征及成因讨论[J].地质学报,2015,89(8):1380-1401.XUE H M, MA F, CAO G Y. Late Mesozoic shoshonotic volcanic rocks in the middle and lower Yangtze River Reaches:ages, geochemical and genesis[J]. Acta Geologica Sinica, 2015, 89(8):1380-1401.
[83] 陈上达,刘聪,陈志贵,等.娘娘山碱性火山-侵入岩特征及成岩定量模拟[J].岩石矿物学杂志,1992,11(4):306-316.CHEN S D, LIU C, CHEN Z G, et al. Characteristics of Niangniangshan alkaline volcano-intrusive rocks and quantitative simulation of petrogenesis[J]. Journal of Petrology and Mineralogy,1992, 11(4):306-316.
[84] 王元龙,张旗,王焰.宁芜火山岩的地球化学特征及其意义[J].岩石学报,2001,17(4):565-575.WANG Y L, ZHANG Q, WANG Y. Geochemical characteristics of volcanic rocks from Ningwu area and its significance[J]. Acta Petrologica Sinica, 2001, 17(4):565-575.
[85] 陈龙.长江中下游地区晚中生代火山岩地球化学研究[D].合肥:中国科学技术大学,2016.CHEN L. A geochemical study of Late Mesozoic volcanics from the Middle-Lower Yangtze Valley[D]. Hefei:University of Science and Technology of China, 2016.
[86] MARSH B D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization:I. Theory[J]. Contributions to Mineralogy and Petrology, 1988, 99:277-291.
[87] MARSH B D, CASHMAN K V. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II:Makaopuhi lava lake[J]. Contributions to Mineralogy and Petrology, 1988, 99(3):292-305.
[88] LENTZE R C F, MCSWEEN Jr H Y. Crystallization of the basaltic shergottites:insights from crystal size distribution (CSD) analysis of pyroxenes[J]. Meteoritics&Planetary Science, 2000, 35(5):919-927.
[89] VONA A, ROMANO C. The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts[J]. Contributions to Mineralogy and Petrology, 2013, 166:491-509.
[90] FORNACIAI A, PERINELLI C, ARMIENTI P, et al. Crystal size distributions of plagioclase in lavas from the July-August 2001 Mount Etna eruption[J]. Bulletin of Volcanology, 2015, 77:1-15.
[91] ZHANG B, HU X, ASIMOW P D, et al. Crystal size distribution of amphibole grown from hydrous basaltic melt at 0.6-2.6 GPa and 860-970 ℃[J]. American Mineralogist, 2019, 104(4):525-535.

备注/Memo

备注/Memo:
收稿日期:2023-12-07;改回日期:2024-03-05。
基金项目:中国地质调查局"华东地区数据更新及地质编图(编号:DD20230225)"、国家自然科学基金"磷灰石地球化学特征对酸性火山喷发及浅部岩浆房过程的指示:以福建永泰云山破火山为例(编号:41702061)"项目联合资助。
作者简介:霍海东,1996年生,男,硕士研究生,矿物学、岩石学、矿床学专业,主要从事古火山地质学与岩石学工作。Email:hdhuo07@163.com。
通讯作者:洪文涛,1986年生,男,副研究员,硕士,主要从事华南火山岩和区域大地构造研究工作。Email:274283688@qq.com。
更新日期/Last Update: 1900-01-01