[1]范飞鹏,陈乐柱,李海立,等.南岭东段枫树洞稀土矿中辉长质包体锆石U-Pb年代学、地球化学特征及其成岩作用[J].华东地质,2020,41(04):325-358.[doi:10.16788/j.hddz.32-1865/P.2020.04.003]
 FAN Fei-peng,CHEN Le-zhu,LI Hai-li,et al.Zircons in the gabbro enclaves of Fengshudong REE deposit in Eastern Nanling Mountains: Chronology, geochemistry and diagenesis[J].East China Geology,2020,41(04):325-358.[doi:10.16788/j.hddz.32-1865/P.2020.04.003]
点击复制

南岭东段枫树洞稀土矿中辉长质包体锆石U-Pb年代学、地球化学特征及其成岩作用()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
41
期数:
2020年04期
页码:
325-358
栏目:
矿产资源
出版日期:
2020-12-20

文章信息/Info

Title:
Zircons in the gabbro enclaves of Fengshudong REE deposit in Eastern Nanling Mountains: Chronology, geochemistry and diagenesis
文章编号:
2096-1871(2020)04-325-14
作者:
范飞鹏1陈乐柱1李海立1鲍晓明1李凤春2申中华2
(1. 中国地质调查局南京地质调查中心,南京 210016; 2. 中国冶金地质总局山东局测试中心,济南 250014)
Author(s):
FAN Fei-peng1 CHEN Le-zhu1 LI Hai-li1 BAO Xiao-ming1 LI Feng-chun2 SHEN Zhong-hua2
(1. Nanjing Center,China Geological Survey, Nanjing 210016, China; 2. Shandong Test Center of China Metallurgical Geology Bureau, Jinan 250014, China)
关键词:
关键词: 风化壳淋积型稀土矿 暗色包体 锆石U-Pb年龄 微量元素 南岭东段 燕山早期
Keywords:
Key words:weathered crust leaching REE deposit dark enclave zircon U-Pb age trace element Eastern Nanling Mountains Early Yanshanian
分类号:
P618.7
DOI:
10.16788/j.hddz.32-1865/P.2020.04.003
文献标志码:
A
摘要:
摘要: 南岭东段是我国稀土矿产资源集中分布区,枫树洞稀土矿是南岭东段风化壳淋积型矿床,通过对该矿床含矿花岗岩层中的包体进行锆石U-Pb年代学和地球化学研究,发现稀土矿层中存在2种辉长质包体:早侏罗世包体((188±2.8)Ma)和晚三叠世包体((227±3.7)Ma)。包体中锆石阴极发光图像(CL)和锆石 Th/U值普遍>0.4,指示为岩浆锆石,大多数锆石稀土元素分布在热液锆石与岩浆锆石过渡区,说明包体中的岩浆锆石遭受后期热液的强烈改造,晚三叠世包体改造最强烈。早侏罗世包体主要锆石Ti温度为694~1 279 ℃,平均值为816 ℃,大多数>800 ℃; 晚三叠世包体主要锆石Ti温度为687~925 ℃,平均值为671 ℃,大多数<750 ℃,包体可能来源于含水条件下发生的部分熔融。包体锆石年龄中存在多组年龄数据,暗示南岭东段晚三叠世—早侏罗世,该地区曾发生了多次岩浆活动,反映了古太平洋板块对华南板块的影响由弱到强的变化过程,在这种俯冲背景下的岩浆由陆壳部分熔融形成,幔源物质活动也呈现出由弱至强的趋势。
Abstract:
Abstract:The eastern Nanling Mountains is the concentrated area of rare earth element(REE)mineral resources in China. By studying the zircon U-Pb age and trace elements of enclaves in ore-bearing granite beds of weathered leaching deposits in Eastern Nanling area, the results show that there are at least two types of gabbro enclaves in REE deposits, namely the Early Jurassic enclave(188±2.8)Ma and Late Triassic enclave(227±3.7)Ma. The zircon CL image and Th/U>0.4 indicate the type is magmatic zircon. The variation characteristics of zircon REEs in the enclave reveal that most zircons are distributed in the transition zone between hydrothermal zircons and magmatic zircons, indicating that the zircons undergo intense hydrothermal reformation in later period and the Late Triassic enclave is most strongly reformed. The Ti temperature of major zircons in the Early Jurassic enclave is 694~1 279 ℃, averagely 816 ℃, nearly half above 800 ℃, while that for the Late Triassic inclusions is 687~925 ℃, averagely 671 ℃, most below 750 ℃, which may originate from the partial melting of various components under the condition of water near saturation. There are multiple groups of zircon age data for the enclaves, showing several magmatic activities occurred in the eastern Nanling during Triassic-Early Jurassic, and the Late Triassic rock mass was melted by Early Jurassic magma, then by Early-Middle Jurassic magma, which reflects the influence of paleo-Pacific Plate on South China Plate is from weak to strong, magma formed by the partial melting of continental crust under the subduction background and the mantle-derived material activity also from weak to strong.

参考文献/References:

[1] 陈国能.关于花岗岩岩石包体的成因及岩基的定位问题——与杜杨松教授讨论[J].高校地质学报, 1998,4(3): 346-349.
[2] 陈国能,张珂,邵荣松,等.原地重熔及其地质效应[J].中山大学学报(自然科学版), 2001, 40(3): 95-99.
[3] 彭卓伦,RODNEY G,庄文明,等.华南花岗岩暗色微粒包体成因研究[J].地学前缘, 2011,18(1): 82-88.
[4] 王涛.花岗岩混合成因研究及大陆动力学意义[J]. 岩石学报,2000,16(2): 161-168.
[5] PERUGINI D, POLI G, GATTA G D. Analysis and simulation of magma mixing processes in 3D[J]. Lithos, 2002, 65(3/4):313-330.
[6] MAAS R, NICHOLLS I A, LEGG C. Igneous and metamorphic enclaves in the S-type Deddick granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing [J]. Journal of Petrology, 1997, 38(7):815-841.
[7] CLEMENS J D, WALL V J. Controls on the mineralogy of S-type volcanic and plutonic rocks [J]. Lithos, 1988, 21(1):53-66.
[8] DAHLQUIST J A. Mafic microgranular enclaves:Early segregation from metaluminous magma(Sierra de Chepes), Pampean Ranges, NW Argentina[J]. Journal of South Aicmane Earth Sciences, 2002,15(6): 643-655.
[9] DONAIRE T, PASCUAL E, PIN C, et al. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: The case of the Los Pedroches granodiorite, Iberian Massif, Spain [J]. Contributions to Mineralogy and Petrology, 2005, 149(3): 247-265.
[10] LLBEYLI N, PEARCE J A. Petrogenesis of igneous enclaves in plutonic rocks of the central Anatolian crystalline complex, Turkey [J]. International Geology Review, 2005, 47(10): 1011-1034.
[11] SHELLNUTT J G, JAHN B M, DOSTAL J. Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China[J]. Lithos, 2010, 119(1/2): 34-46.
[12] DIDIER J, BARBARIN B. Enclaves and Granite Petro logy [M]. New York: Elsevier Science Publishers, 1991.
[13] CHEN G N, GRAPES R H. In-situ melting model for graniteformation: Evidence from SE China [J]. International Geology Review, 2003, 45(10): 611-622.
[14] CHEN G N, GRAPES R H, ZHANG K. Mesozoic crustal melting and tectonic deformation in SE China [J]. International Geology Review, 2003, 45(10): 948-957.
[15] CHEN G N, GRAPES R. Granite Genesis: In-situ Melting and Crustal Evolution [M]. Dordrecht, Netherlands: Springer, 2007: 1-278.
[16] 彭卓伦,陈国能,庄文明,等. 暗色微粒包体与花岗岩的成因关系研究[C]//中国矿物岩石地球化学学会第13届学术年会论文集.贵阳:中国矿物岩石地球化学学会,2011:1.
[17] 彭卓伦,陈国能,RODNEY GRAPES. 深圳王母岩体暗色包体中的蚀变矿物[C]//中国矿物岩石地球化学学会第13届学术年会论文集.贵阳:中国矿物岩石地球化学学会,2007:2.
[18] 彭卓伦,RODNEY GRAPES,庄文明,等.华南花岗岩暗色微粒包体矿物组成及微结构研究[J].地学前缘,2011,18(1): 63-73.
[19] 彭卓伦,RODNEY GRAPES,庄文明,等.华南花岗岩暗色微粒包体的岩石化学组成特征及其意义[J].地学前缘, 2011, 18(1): 74-81.
[20] CHAPPELL B W, WHITE A J R, WYBORN D. The importance of residual source material(restite)in granite petrogenesis[J]. Journal of Petrology, 1987, 28(6): 1111-1138.
[21] ELBURG M A. Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton granodiorite, Lachlan Fold Belt, Austra- lia [J]. Lithos,1996, 26(38): 1-22.
[22] 陈国能,张珂,徐伟,等.华南中生代花岗岩岩石包体的成因与分类[J].中山大学学报(自然科学版), 1993, 32(增刊): 305-311.
[23] GARCíA-MORENO O, CASTRO A, CORRETGé L G, et al. Dissolution of tonalitic enclaves in ascending hydrous granitic magmas:An experimental study [J]. Lithos, 2006, 45: 66-78.
[24] 范飞鹏,肖惠良,陈乐柱,等.赣南陂头一带风化壳淋积型稀土矿成矿地质特征[J].中国稀土学报, 2014, 32(1): 101-107.
[25] 霍明远.中国南岭风化壳型稀土资源分布特征[J].自然资源学报,1992, 7(1): 64-70.
[26] BARBARIN B, DIDIER J. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic mag- mas [J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992,83(1/2):145-153.
[27] COLLINS W J, WIEBE R A. Healy B, et al. Replenishment, crystal accumulation and floor aggradation in the megacrystic Kameruka Suite, Australia[J]. Journal of Petrology, 2006, 47(11): 2073-2104.
[28] BLUNTLY J D, SPARKS R S J. Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy [J]. Journal of Petrology, 1992, 33(5): 1039-1104.
[29] CLEMENS J D. S-type granitic magmas—Petrogenetic issues, Models and evidence[J]. Earth Science Reviews, 2003, 61(1/2):1-18.
[30] BARBARIN B. Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: Nature, origin, and relations with the hosts[J]. Lithos, 2005, 80(1/4): 155-177.
[31] SILVA M M V G, NEIVA A M R, WHITEHOUSE M J. Geochemistry of enclaves and host granites from the Nelas area, central Portugal [J]. Lithos, 2000, 50: 153-170.
[32] BLAKE S, FINK J H. On the deformation and freezing of enclaves during magma mixing [J]. Journal of Volcanology and Geothermal Research, 2000, 95: 1-8.
[33] DIEGO P, GIAMPIERO P. Chaotic dynamics and fractals in magmatic interaction processes: A different approach to the interpretation of mafic microgranular enclaves[J]. Earth and Planetary Science Letters, 2000, 175(1/2): 93-103.
[34] 周新民,姚玉鹏,徐夕生.浙东大衢山花岗岩中淬冷包体及其成因机制[J]. 岩石学报, 1992, 8(3): 234-242.
[35] 杜杨松.酸性-中酸性火山-侵入杂岩中岩石包体研究的新进展[J]. 现代地质, 1996, 10(2): 169-174.
[36] 徐夕生,周新民. 皖南前寒武纪花岗岩类中的岩石包体[J].矿物岩石, 1991, 11(1): 24-28.
[37] 张泽斌,唐菊兴,唐攀, 等.西藏甲玛铜多金属矿床暗色包体岩石成因:对岩浆混合和成矿的启示[J]. 岩石学报, 2019, 35(3): 934-952.
[38] 关义立,袁超,龙晓平,等.华南早古生代花岗岩中暗色包体的成因:岩石学、地球化学和锆石年代学证据[J].大地构造与成矿学, 2016, 40(1): 109-124.
[39] 朱金初,张佩华,谢才富,等.桂东北里松花岗岩中暗色包体的岩浆混合成因[J].地球化学, 2006, 35(5): 506-516.
[40] 刘勇,肖庆辉,耿树方,等.骑田岭花岗岩体的岩浆混合成因:寄主岩及其暗色闪长质微细粒包体的锆石U-Pb年龄和Hf同位素证据[J].中国地质,2010, 37(4): 1081-1091.
[41] 马铁球,伍光英,贾宝华,等.南岭中段郴州一带中、晚侏罗世花岗岩浆的混合作用——来自镁铁质微粒包体的证据[J]. 地质通报, 2005, 24(6): 506-512.
[42] 华仁民,张文兰,顾晨彦,等.南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比[J]. 岩石学报, 2007, 23(10): 2321-2328.
[43] 江西省地质矿产局,赣南地质调查大队.足洞花岗岩风化壳离子吸附型重稀土矿[R]. 1987:1-289.
[44] 范飞鹏,肖惠良,陈乐柱,等.南岭东段含稀土矿花岗岩体中暗色包体地质特征——以陂头岩体为例[J]. 华东地质, 2016,37(1): 36-44.
[45] 杨大欢,肖光铭.广东省离子吸附型稀土矿区域成矿规律研究[J]. 地质与资源, 2011, 20(6): 462-468.
[46] BELOUSOVA E A, GRIFFIN W L, O’REILI Y S Y, et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type [J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.
[47] 李长民. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 2009, 33(3):161-174.
[48] GRIMES C B, JOHN B E, KEI EMEN P B, et a1. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance [J]. Geology, 2007, 35(7): 643-646.
[49] 徐恒,崔银亮,周家喜,等.云南宝丰寺岩体锆石微量元素特征及地质意义[J].地质找矿论丛, 2019(1):132-139.
[50] 陈骏,王汝成,朱金初,等.南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学:地球科学, 2014,44(1):111-121.
[51] 舒良树,周新民,邓平,等.南岭构造带的基本地质特征[J]. 地质论评, 2006, 52(2): 251-265.
[52] 毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地质学报, 2006, 80(6): 923-924.
[53] 陶继华,李武显,蔡元峰,等.南岭东段龙源坝印支和燕山期二云母花岗岩中白云母矿物化学特征及地质意义[J].中国科学:地球科学, 2013,43(10): 1659-1666.
[54] 陶继华,李武显,李献华,等.赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J].中国科学:地球科学, 2013,43(5): 760-778.
[55] 张敏,陈培荣,黄国龙,等.南岭东段龙源坝复式岩体LA-ICP-MS 锆石U-Pb 年龄及其地质意义[J]. 地质学报, 2006, 80(7): 984-994.
[56] 陈培荣,周新民,张文兰,等. 南岭东段燕山早期正长岩-花岗岩杂岩的成因和意义[J].中国科学:地球科学,2004, 34(6): 493-503.
[57] HE Z Y, XU X S, NIU Y L. Petrogenesis and tectonic significance of a Mesozoic granite-syenite-gabbro association from inland South China [J]. Lithos, 2010, 119(3/4):621-641.
[58] SLAMA J, KOSLER J,CONDON D J. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.
[59] LUDWING K R. Isoplot 3.0: A geochronological tool kit for Microsoft excel[J]. Berkeley Geochronology Center special publication, 2003(4):1-71.
[60] 吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.
[61] 周剑雄,陈振宇.电子探针下锆石阴极发光的研究[M].成都:四川电子科技大学出版社,2007:1-28.
[62] TAYLOR S R,MCLENNAN S M.The continental crust: its composition and evolution [J]. Physics of the Earth and Planetary Interiors,1986, 42(3):196-197.
[63] RAYNER N, STERN R A, CARR S D. Grain-scale Variations in Trace Element Composition of Fluid-altered Zircon, Acasta Gneiss Complex, Northwestern Canada[J]. Contributions to Mineralogy and Petrology, 2005, l48(6): 72l-734.
[64] PETTKE T, AUDETAT A, SCHALTEGGER U, et a1. Magmatic-to-hydrothermal Crystallization in the W-Sn Mineralized Mole Granite(NSW, Australia)Part 11:Evolving Zircon and Thorite Trace Element Chemistry [J]. Chemical Geology, 2005, 220(3/4): 191-213.
[65] 赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286.
[66] HOSKIN P W O.Trace element Composition of Hydro-thermal Zircon and the Alteration of Hadean Zircon from the Jack Hills,Australia [J].Geochimica et Cosmochimica Acta,2005, 69(3):637-648.
[67] 范飞鹏,肖惠良,陈乐柱,等.南岭东段黄峰寨岩体SHRIMP锆石U-Pb年龄及地质意义[J].华东地质, 2016, 37(3): 166-173.
[68] 周新民,陈培荣,徐夕生,等.南岭晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社,2007:627-640.
[69] LI X H,CHEN Z G, LIU D Y et al. Jurassic gabbro-granite-syenite suites from southern Jiangxi province, SE China: age, origin, and tectonicsignificant [J]. International Geology Review, 2003,45(10): 898-921.
[70] 范春方,陈培荣.赣南陂头花岗岩体Nd-Sr同位素特征及其意义[J].地质找矿论丛,2000,15(3): 282-287.
[71] WATSON E B,HARRISON T M. Zircon saturation revisited: Temperature and composition effect in avariety of crustal magmas types [J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304.
[72] WATSON E B,WARK D A,TOMAS J B. Crystallization thermometers for zircon rutile[J].Contrib Mineral Petrol, 2006,151:413-433.
[73] FERRY J M,WATSON E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers [J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437.
[74] 周金胜,孟祥金,臧文栓,等. 西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义[J]. 岩石学报, 2013, 29(11): 3755-3766.
[75] SCAILLET B, PICHAVAMT M,ROUX J. Experimental crystallization of leucogranite magmas [J]. Journal of Petrology, 1995, 36(3): 663-705.
[76] 何苗,刘庆,孙金凤,等.湘东地区锡田印支期花岗岩的地球化学特征及其构造意义[J]. 岩石学报, 2018, 34(7): 2065-2086.
[77] 程顺波,付建明,崔森,等.湘桂边界越城岭岩基北部印支期花岗岩锆石U-Pb年代学和地球化学特征[J]. 中国科学:地球科学, 2018, 43(7): 2330-2349.
[78] LI Z X, LI X H. Formation of the 1 300 km wide intra-continental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model [J]. Geology, 2007, 35(2): 179-182.
[79] 丁兴, 陈培荣, 陈卫锋, 等. 湖南沩山花岗岩中锆石LA-ICP-MS U-Pb 定年: 成岩启示和意义[J]. 中国科学:地球科学, 2005, 35(7): 606-616.
[80] 陈培荣, 孔兴功, 王银喜, 等. 赣南燕山早期双峰式火山-侵入杂岩的Rb-Sr 同位素定年及意义[J]. 高校地质学报, 1999, 5(4): 367-383.
[81] 陈培荣, 孔兴功, 倪琦生, 等. 赣南燕山早期双峰式火山的厘定和意义[J]. 地质论评, 1999, 45(增刊): 734-741.
[82] 李献华,李武显,李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9): 981-991.

备注/Memo

备注/Memo:
*收稿日期:2020-04-03 修订日期:2020-05-18 责任编辑:叶海敏
基金项目:中国地质调查局“钦杭成矿带武宁—平江地区钨铜多金属矿地质调查(编号:DD20190153)”、“江西竹山—广东澄江地区钨锡多金属矿远景调查(编号:1212011120813)”和科技部“武夷德化—尤溪—永泰矿集区三维综合探测与深部成矿预测(编号:2016YFC0600210)”项目联合资助。
第一作者简介:范飞鹏,1982年生,男,高级工程师,主要从事矿产资源勘查和矿床学研究工作。Email:389965892@qq.com。
更新日期/Last Update: 2020-12-23