[1]崔玉贵,姜月华,刘 林,等.高密度电法在江西于都黄麟地区地热勘查中的应用[J].华东地质,2020,41(04):368-374.[doi:10.16788/j.hddz.32-1865/P.2020.04.007]
 CUI Yu-gui,JIANG Yue-hua,LIU Lin,et al.Application of high-density resistivity method in geothermal exploration in Huanglin area of Yudu County, Jiangxi Province[J].East China Geology,2020,41(04):368-374.[doi:10.16788/j.hddz.32-1865/P.2020.04.007]
点击复制

高密度电法在江西于都黄麟地区地热勘查中的应用()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
41
期数:
2020年04期
页码:
368-374
栏目:
地热资源
出版日期:
2020-12-20

文章信息/Info

Title:
Application of high-density resistivity method in geothermal exploration in Huanglin area of Yudu County, Jiangxi Province
文章编号:
2096-1871(2020)04-368-07
作者:
崔玉贵12姜月华3刘 林3梅世嘉3张哲豪3周权平3杨 辉3邹仁波4
(1. 中国地质科学院,北京 100037 2. 中国地质大学(北京),北京 1000833. 中国地质调查局南京地质调查中心,南京 2100164. 江西省勘察设计研究院,南昌 330000)
Author(s):
CUI Yu-gui12 JIANG Yue-hua3 LIU Lin3 MEI Shi-jia3 ZHANG Zhe-hao3 ZHOU Quan-ping3 YANG Hui3 ZOU Ren-bo4
(1. Chinese Academy of Geological Sciences, Beijing 100037, China; 2. China University of Geosciences, Beijing 100083, China; 3. Nanjing Center, China Geological Survey, Nanjing 210016, China; 4. Jiangxi Institute of Survey and Design, Nanchang 330000, China)
关键词:
关键词: 高密度电法 地热勘查 电阻率模型 断裂 江西于都
Keywords:
Key words:high-density resistivity method geothermal exploration resistivity model fault Yudu County of Jiangxi Province
分类号:
P631.3 P314.2
DOI:
10.16788/j.hddz.32-1865/P.2020.04.007
文献标志码:
A
摘要:
摘要: 高密度电法具有点距小、数据采集效率高、探测精度高等优点,在地热勘查中得到广泛应用。应用高密度电法在江西于都黄麟地区布设了11条测线,对实测电阻率数据进行反演计算,建立研究区地下二维电阻率模型,直观刻画各剖面在不同深度电阻率变化特征。分析了NE向、NW向、NNE向3组断裂地下延伸及产状变化规律,从而推测出地热水赋存有利位置。解释结果显示:研究区围岩主要呈现相对高阻,断裂发育区域电阻率横向变化明显且纵向有一定延伸,破碎带由于含水异常呈现明显低阻。NE向安远—鹰潭深大断裂与NNE向断裂相互作用带富水性良好,通过布设探采结合井进一步揭示了研究区地热类型为对流型。当设计水位降深50 m时,涌水量可达920.80 m3/d,实测水温44.5 ℃,具有良好的开发利用前景。
Abstract:
Abstract:The high-density resistivity method, with the the advantages of small dot pitch, high data-acquisition efficiency and high detection accuracy, has been widely applied in geothermal exploration. Using the method, 11 survey lines are set up in Huanglin area of Jiangxi Province, the 2D underground resistivity model is established by inversion calculation of measured resistivity data, which visually describes the resistivity variation characteristics of each section at different depths, and the underground extension and occurrence variation of NE, NW and NNE faults are analyzed to predict the favorable location of geothermal water. The interpretation results show that the surrounding rocks in the study area have high resistance, the resistivity of fault areas has distinct lateral variation and longitudinal extension, and the fracture zone has obvious low resistance due to water cut. The water abundance in the interaction zone between NE Anyuan-Yingtan deep fault and NNE fault is good, and the integrated exploration and developing well further reveals that the geothermal system in the study area is convection type. When the designed drawdown is 50 m deep, the water inflow can reach 920.80 m3/d with measured water temperature of 44.5 ℃, showing a good development and utilization prospect.

参考文献/References:

[1] 唐强,陈学君.江西省于都县桃溪矿区矿产成矿潜力分析[J].世界有色金属, 2018,513(21): 99-100.
[2] 周龙全,李光来,唐傲,等.赣南地区石英脉型钨矿成矿流体特征[J].华东地质, 2016,37(2): 136-146.
[3] 江西省地质矿产勘查开发局.中国区域地质志·江西志[M].北京:地质出版社,2017:663-781.
[4] 沈华,吴跃东,金世恒,等.安徽霍山石英岩玉矿床地质特征与地球物理找矿方法[J].华东地质, 2017,38(1): 51-57.
[5] 姜月华,李云,葛伟亚,等.河南巩义抗旱地下水井位确定和钻探方法[J].华东地质, 2018,39(2): 142-150.
[6] 王庆峰.高密度电法不同装置的应用效果分析[J].科技信息, 2012(7): 145-146.
[7] 肖宏跃,雷宛.地电学教程[M].北京:地质出版社,2008:99-103.
[8] 曾昭发,陈雄,李静,等.地热地球物理勘探新进展[J].地球物理学进展, 2012,27(1): 168-178.
[9] 董浩斌,王传雷.高密度电法的发展与应用[J].地学前缘, 2003,10(1): 171-176.
[10] LOKE M H, CHAMBERS J, RUCKER D F,et al. Recent developments in the direct-current geoelectrical imaging method[J]. Journal of Applied Geophysics,2013,95:135-156.
[11] LOKE M H, BARKER R D. Barker. Rapid least squares inversion of apparent resistivity pseudosections by a quasi-Newton method[J]. Geophysical Prospecting,1996,44(1):131-152.
[12] 段文兵,邓建军,邹国瑶,等.赣南于都地区水文地质调查与地热水勘查成果报告[R].南昌:江西省勘察设计研究院,2019:2-3.
[13] 李学礼,史维浚,周文斌,等.江西大地热流[J].地质科学, 1992(增刊): 383-385.
[14] 胡圣标,汪集旸.中国东南地区各造山带大地热流特征[J].地质论评, 1994,40(5): 387-394.
[15] 林乐夫,王安东,孙占学,等.江西省实测地表热流值及特征[J].能源研究与管理, 2017(3): 91-94.
[16] 李学礼,周文斌,张卫民,等.江西省大地热流与铀矿关系的初步研究[J].铀矿地质, 1993(4): 22-26.
[17] 蔡晶晶,阎长虹,王宁,等.高密度电法在地铁岩溶勘察中的应用[J].工程地质学报, 2011,19(6): 935-940.
[18] 刘晓,唐春,甘建军.高密度电法在江西吉安某地区地热勘查中的应用[J].工程地质学报, 2018,26(增刊): 388-391.
[19] 刘振夏,陈植华,龚冲.高密度电法在变质岩山区找水中的应用研究[J].地下水, 2019,41(1): 81-82.
[20] 胡旭,雷宛,张林,等.高密度电法和音频大地电磁法在四川石棉地热勘探中的应用[J].勘察科学技术, 2018,219(5): 58-61.
[21] 朱德兵.工程地球物理方法技术研究现状综述[J].地球物理学进展, 2002,17(1): 163-170.
[22] MAURIELLO P, PATELLA D. Resistivity anomaly imaging by probability tomography[J]. Geophysical Prospecting,1999,47(3):411-429.
[23] 陈琨,罗润林,高柱,等.综合物探方法在寻找地热温泉中的应用[J].工程地球物理学学报, 2015,12(3): 354-360.
[24] 俞汶,雷宛,刘垒,等.高密度电法在地热勘探中的应用[J].勘察科学技术,2013(4): 49-51.
[25] BRACE W F, ORANGE A S. Electrical resistivity changes in saturated rocks during fracture and frictional sliding [J]. Journal of Geophysical Research Atmospheres,1968,73(4):1433-1445.
[26] STESKY R M. Electrical conductivity of brine-saturated fractured rock [J]. Geophysics,1986,51(8): 1585-1593.
[27] SLATER L D, Binly A, Brown D. Electrical imaging of fractures using groundwater salinity change[J]. Ground Water,1997,35(3): 436-442.
[28] 牛一雄,潘和平,王文先,等.中国大陆科学钻探主孔(0~2 000 m)地球物理测井[J].岩石学报, 2004,20(1): 165-178.
[29] 沈金松,苏本玉,郭乃川.裂缝性储层的电各向异性响应特征研究[J].地球物理学报, 2009,52(11): 2903-2912.
[30] TABBAGH J, SAMOULIAN A, TABBAGH A. Numerical modelling of direct current electrical resistivity for the characterization of cracks in soils [J].Journal of Applied Geophysics,2007,62(4):313-323.
[31] 吴建生,王家林,赵永辉,等.地球物理学入门[M].上海:同济大学出版社,2017:141-147.
[32] 汪集旸.中低温对流型地热系统[J].地学前缘,1996,3(3): 96-100.

备注/Memo

备注/Memo:
*收稿日期:2020-05-13 修订日期:2020-07-27 责任编辑:叶海敏
基金项目:中国地质调查局“长江经济带地质环境综合调查工程( 编号:0531)”和“长江三角洲经济区环境地质调查( 编号: 0531189、 DD20160246)”项目联合资助。
第一作者简介:崔玉贵,1996年生,男,硕士研究生,主要从事水文地质和地热地质研究。Email:1134152181@qq.com。
通信作者简介:姜月华, 1963年生,男,研究员,主要从事环境地质和水文地质调查研究工作。Email:316664105@qq.com。
更新日期/Last Update: 2020-11-19