[1]徐明钻,梁 森,石剑龙,等.航空高光谱反演耕地土壤重金属分布特征——以苏北灌河地区为例[J].华东地质,2021,42(01):100-107.[doi:10.16788/j.hddz.32-1865/P.2021.01.012]
 XU Mingzuan,LIANG Sen,SHI Jianlong,et al.Airborne hyperspectral inversion of heavy metal distribution in cultivated soil: A case study of the Guanhe area, north Jiangsu Province[J].East China Geology,2021,42(01):100-107.[doi:10.16788/j.hddz.32-1865/P.2021.01.012]
点击复制

航空高光谱反演耕地土壤重金属分布特征——以苏北灌河地区为例()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
42
期数:
2021年01期
页码:
100-107
栏目:
技术方法与应用
出版日期:
2021-05-30

文章信息/Info

Title:
Airborne hyperspectral inversion of heavy metal distribution in cultivated soil: A case study of the Guanhe area, north Jiangsu Province
文章编号:
2096-1871(2021)01-100-08
作者:
徐明钻12梁 森12石剑龙12季 岩12黄 岩12梁胜跃1严维兵1
1.江苏省地质勘查技术院,江苏 南京 210049; 2.江苏省地质矿产勘查局航空对地探测技术研究中心,江苏 南京 210049
Author(s):
XU Mingzuan12 LIANG Sen12 SHI Jianlong12JI Yan12HUANG Yan12LIANG Shengyue1YAN Weibing1
1. Geological Exploration Technology Institute of Jiangsu Province, Nanjing 210049, Jiangsu, China; 2. Technology Research Center of Airborne Detecting of JSGM, Nanjing 210049, Jiangsu, China
关键词:
航空高光谱 土壤重金属 特征波段 BP神经网络
Keywords:
airborne hyperspectral heavy metals in soil characteristic bands BP neutral network
分类号:
P627 TP79 X53
DOI:
10.16788/j.hddz.32-1865/P.2021.01.012
文献标志码:
A
摘要:
为探索航空高光谱遥感开展大比例尺、大面积土壤重金属含量和分布特征快速调查的技术方法和工作流程,以苏北灌河地区为例,利用国产高光谱成像仪和自主集成的航空高光谱遥感测量系统获取影像光谱数据,通过数据预处理、CARS特征波段选择及BP神经网络建模反演等方法,建立了从数据获取到数据分析评价的工作流程,反演了土壤重金属元素含量,展示了其空间分布特征。与传统地球化学调查数据进行对比分析,结果显示高光谱反演成果与地球化学调查的重金属浓度空间分布特征吻合度较高,验证了航空高光谱反演耕地土壤重金属分布特征的可靠性。在区域性耕地土壤重金属污染调查评价方面,航空高光谱遥感能够快速、及时地获取土壤污染及相关信息,并具有很好的实用性和经济性。
Abstract:
In order to research the technical method and workflow of rapid investigation of soil heavy metal content and distribution characteristics in large-scale and large-area by airborne hyperspectral remote sensing, taking Guanhe area in northern Jiangsu Province as an example, the domestic hyperspectral sensor and the independent integrated airborne hyperspectral remote sensing system were used to obtain the image spectral data. By means of data preprocessing, CARS characteristic band selection and BP neural network modeling inversion, a workflow from data acquisition to data analysis and evaluation was established, the content of heavy metals in soil was estimated and its spatial distribution characteristics were displayed. Compared with the traditional geochemical survey data, the results show that the hyperspectral inversion results are in good agreement with the geochemical results, which verifies the reliability of the airborne hyperspectral inversion technology. In the aspect of heavy metal pollution investigation and evaluation of regional farmland soil, airborne hyperspectral remote sensing can quickly and timely obtain soil pollution and related information with good practicability and economical efficiency.

参考文献/References:

[1] 罗杰.广东省韩江三角洲土壤污染物源辨析及环境承载力[D]. 武汉:中国地质大学(武汉),2016:1-166.
[2] 姜薇.重金属污染物在红壤迁移规律及修复技术研究[D]. 武汉:华中科技大学, 2012.
[3] 凌其聪,严森,鲍征宇.大型冶炼厂重金属环境污染特征及其生态效应[J]. 中国环境科学, 2006, 26(5):603-608.
[4] 郑雄伟,王俊锋,郑国权,等.洪湖市某地区农水产品重金属含量特征及其安全性分析[J]. 华东地质,2016,37(4):300-305.
[5] 顾佳,闫玉茹,平利姣.南通近海潮滩表层沉积物重金属含量特征与生态风险评价[J]. 华东地质,2017,38(2):155-160.
[6] 黄海涛,魏彩春,梁延鹏,等.重金属污染场地修复技术的研究进展[J]. 宁夏农林科技, 2011,52(5): 43-46.
[7] KOOISTRA L, WEHRENS R, LEUVEN R, et al. Possibilities of visible near infrared spectroscopy for the assessment of soil contamination in river of loodplains[J]. Analytica Chimica Acta,2001, 446(1/2):97-105.
[8] WANG J J, CUI L J, GAO W X, et al. Prediction of low heavy metal concentrations in agricultural soils using visible and near-infrared reflectance spectro-scopy[J]. Geoderma,2014, 216(1): 1-9.
[9] 田爱军,李冰.江苏省灌河流域污染特征及污染控制对策[J].湖泊科学, 2012,24(4): 535-540.
[10] 江苏省地质调查研究院.江苏省国土区域生态地球化学调查(125万多目标报告)[R].南京:江苏省地质调查研究院,2007:1-418.
[11] PYO J C, LIGARAY M, KWON Y S, et al. High-spatial resolution monitoring of and phycocyanin chlorophyll-a using airborne hyperspectral imagery[J]. Remote Sensing, 2018, 10(8): 1180.
[12] MATTHEWS M W, BERNARD S, WINTER K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS[J]. Remote Sensing of Environment, 2010,114(9): 2070-2087.
[13] TAN K, WANG H, ZHANG Q, et al. An improved estimation model for soil heavy metal concentration retrieval in mining areas using reflectance spectro-scopy[J]. Journal of Soils and Sediments,2018,18(5):2008.
[14] TANG G, HUANG Y, TIAN K D, et al. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm[J]. Analyst, 2014,139(19):4894-4902.
[15] 何国祥. 蒙特卡罗方法及应用[J]. 考试周刊, 2016(6):105-107.
[16] 张德丰. MATLAB神经网络应用设计[M]. 北京: 机械出版社,2009.
[17] 闻新. 智能故障诊断技术:MATLAB应用[M]. 北京:北京航空航天大学出版社, 2015.
[18] 王青海. BP神经网络算法的一种改进[J]. 青海大学学报, 2004,22(3):82-84.
[19] 王金凤,王世杰,白晓永,等.基于高光谱反射率的喀斯特地区土壤重金属锌元素含量反演[J]. 光谱学与光谱分析,2019,39(12):3873-3879.
[20] 朱磊.基于BP神经网络的软件可靠性模型选择研究[D].重庆:重庆大学,2006.
[21] NAWAR S, MOUAZEN A M. Comparison between random forests, artificial neural networks and gradient boosted machines methods of online vis-NIR spectroscopy measurements of soil total nitrogen and total carbon [J]. Sensors,2017,17(10):2428.
[22] 蔡天净,唐瀚. Savitzky-Golay平滑滤波器的最小二乘拟合原理综述[J].数字通信,2011,38(1):63-68.
[23] 袁自然,魏立飞,张杨熙,等.优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析[J].光谱学与光谱分析,2020,40(2): 567-573.
[24] 夏可,张世文,沈强,等.基于熵值组合模型的矿业复垦土壤重金属高光谱反演[J].发光学报,2019,40(12):1563-1573.
[25] 黄长平,刘波,张霞,等.土壤重金属Cu含量遥感反演的波段选择与最佳光谱分辨率研究[J].遥感技术与应用,2010,25(3):353-357.
[26] 中华人民共和国国土资源部. DZ/T 0258—2014 多目标区域地球化学调查规范[S].北 京:地质出版社,2014.
[27] 中华人民共和国国土资源部. DZ/T 0295—2016 土地质量地球化学评价规范[S].北京:地质出版社,2016.
[28] 中华人民共和国生态环境部. GB 15618—2018 土壤环境质量农用地土壤污染风险管控标准(试行)[S].北京:中国标准出版社,2018.

备注/Memo

备注/Memo:
*收稿日期:2020-12-08 修订日期:2021-01-18 责任编辑:谭桂丽
基金项目:江苏省2016年省级耕地污染防治专项基金“江苏省灌河沿线及长江北岸耕地污染快速调查与修复方法研究试点(编号:苏财建[2017]123号)” 项目资助。
第一作者简介:徐明钻,1983年生,男,高级工程师,主要从事生态地球化学和矿产勘查工作。Email: hblfxmz@163.com。
通信作者简介:梁森,1984年生,男,工程师,主要从事测绘遥感工作。Email: 360835386@qq.com。
更新日期/Last Update: 2021-03-28