[1]熊定一,王孝磊,邢光福.从超大陆旋回看前寒武纪伟晶岩型锂矿的形成[J].华东地质,2023,44(01):1-12.[doi:10.16788/j.hddz.32-1865/P.2023.01.001]
 XIONG Dingyi,WANG Xiaolei,XING Guangfu.A supercontinental cycles perspective for the formation of Precambrian pegmatitic lithium deposits[J].East China Geology,2023,44(01):1-12.[doi:10.16788/j.hddz.32-1865/P.2023.01.001]
点击复制

从超大陆旋回看前寒武纪伟晶岩型锂矿的形成()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年01期
页码:
1-12
栏目:
重要矿产资源专辑
出版日期:
2023-04-15

文章信息/Info

Title:
A supercontinental cycles perspective for the formation of Precambrian pegmatitic lithium deposits
作者:
熊定一1 王孝磊1 邢光福2
1. 内生金属矿床成矿机制研究国家重点实验室, 南京大学地球科学与工程学院, 江苏南京 210023;
2. 中国地质调查局南京地质调查中心, 江苏南京 210016
Author(s):
XIONG Dingyi1 WANG Xiaolei1 XING Guangfu2
1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China;
2. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China
关键词:
超大陆旋回前寒武纪伟晶岩型锂矿成矿规律造山作用地壳物质再造
Keywords:
supercontinental cyclePrecambrian pegmatitic lithium depositmetallogenyorogenycrustal materials reworking
分类号:
P534.1P618.71
DOI:
10.16788/j.hddz.32-1865/P.2023.01.001
摘要:
金属矿床的形成与地球内动力过程密切相关,在某种程度上是全球构造特别是大陆演化的结果。因此,深入理解全球超大陆旋回与金属矿床之间的联系,既可以加强对区域成矿规律的把握,又可以提升对大陆演化过程的认识。在"碳中和"和"碳达峰"背景下,作为"能源金属"重要矿产,锂矿在近几年备受关注。该文总结了全球前寒武纪伟晶岩型锂矿的地质特征及其与前寒武纪超大陆旋回之间的联系,指出前寒武纪伟晶岩型锂矿主要形成于2.6 Ga、1.8 Ga和1.0~0.9 Ga 3个时段,与造山作用有关,与S型花岗岩具有密切联系,且与古老地壳物质的再造有关;超大陆聚合的陆-陆碰撞造山过程引起的地壳物质循环、活化和再富集是形成伟晶岩型锂矿的先决条件。
Abstract:
The formation of metal deposits is closely related to Earth’s endogenic processes, and to some extent is resulted from global tectonic, and especially continental evolution. Thus, deeply interpreting the relationship between global supercontinental cycles and metal deposits could help us not only better understand the regional metallogeny, but also enhance the knowledge of continental evolution process. As an important resource of energy metal, lithium deposits are highly concerned recently in the context of "carbon neutrality" and "emission peak". This study reviews global Precambrian pegmatitic lithium deposits and reveals the connection between their formation and Precambrian supercontinental cycles. Their peak periods of occurrence are at 2.6 Ga, 1.8 Ga and 1.0~0.9 Ga. These deposits were formed by pre-existing materials reworking during orogeny and directly linked to the generation of S-type granites. The study stresses that the recycling, re-fertilizing and re-enriching of crustal materials caused by continental-continental collisional orogeny during supercontinental assembly are the prerequisites for forming pegmatitic lithium deposits.

参考文献/References:

[1] KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources:Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48:55-69.
[2] BRADLEY D, MUNK L, JOCHENS H, et al. A preliminary deposit model for lithium brines[R]. USGS Professional Paper, 2013, 1006:1-6.
[3] CHEN C, LEE C A, TANG M, et al. Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment[J]. Nature Communications, 2020, 11(1):5313.
[4] ?RNY’ P, LONDON D, NOVáK M. Granitic pegmatites as reflections of their sources[J]. Elements, 2012, 8(4):289-294.
[5] ?RNY’ P. Rare-element granitic pegmatites. Part I:anatomy and internal evolution of pegmatite deposits[J]. Geoscience Canada, 1991, 18(2):49-67.
[6] DITTRICH T, SEIFERT T, SCHULZ B, et al. Archean rare-metal pegmatites in Zimbabwe and Western Australia:Geology and metallogeny of pollucite mineralisations[M]. Berlin, Springer:2019.
[7] ?RNY’ P, HALDEN N M, FERREIRA K, et al. Extreme fractionation and deformation of the leucogranite-pegmatite suite at Red Cross Lake, Manitoba, Canada. II. Petrology of the leucogranites and pegmatites[J]. The Canadian Mineralogist, 2012, 50(6):1807-1822.
[8] STILLING A, ?RNY’ P, VANSTONE P J. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenic significance[J]. The Canadian Mineralogist, 2006, 44(3):599-623.
[9] FENG R, KERRICH R. Single zircon age constraints on the tectonic juxtaposition of the Archean Abitibi greenstone belt and Pontiac subprovince, Quebec, Canada[J]. Geochimica et Cosmochimica Acta, 1991, 55(11):3437-3441.
[10]MULJA T, WILLIAMS-JONES A E, WOOD S A, et al. The rare-element-enriched monzogranite-pegmatite-quartz vein systems in the Preissac-Lacorne Batholith, Quebec. Ⅱ. Geochemistry and petrogenesis[J]. The Canadian Mineralogist, 1995, 33:817-833.
[11]BYNOE L. Shear zone influence on the emplacement of a giant pegmatite:The Whabouchi lithium pegmatite, Quebec, Canada[D]. Canada:Western University, 2014.
[12]PARTINGTON G, MCNAUGHTON N, WILLIAMS I. A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia[J]. Economic Geology, 1995, 90:616-635.
[13]BADANINA E V, SITNIKOVA M A, GORDIENKO V V, et al. Mineral chemistry of columbite-tantalite from spodumene pegmatites of Kolmozero, Kola Peninsula (Russia)[J]. Ore Geology Reviews, 2015, 64:720-735.
[14]CHALOKWU C I, GHAZI M A, FOORD E E. Geochemical characteristics and K-Ar ages of rare-metal bearing pegmatites from the Birimian of southeastern Ghana[J]. Journal of African Earth Sciences, 1997, 24(1):1-9.
[15]LEVITSKIY V, MEL’NIKOV A I, REZNITSKII L Z, et al. Early Proterozoic postcollisional granitoids in southwestern Siberian craton[J]. Geologiya I Geofizika, 2002, 43:717-731.
[16]ZAGORSKY V Y, VLADIMIROV A G, MAKAGON V M, et al. Large fields of spodumene pegmatites in the settings of rifting and postcollisional shear-pull-apart dislocations of continental lithosphere[J]. Russian Geology and Geophysics, 2014, 55(2):237-251.
[17]GOURCEROL B, GLOAGUEN E, MELLETON J, et al. Re-assessing the European lithium resource potential-A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 2019, 109:494-519.
[18]GLYNN S M, MASTER S, WIEDENBECK M, et al. The Proterozoic Choma-Kalomo Block, SE Zambia:Exotic terrane or a reworked segment of the Zimbabwe Craton?[J]. Precambrian Research, 2017, 298:421-438.
[19]DEWAELE S, HULSBOSCH N, CRYNS Y, et al. Geological setting and timing of the world-class Sn, Nb-Ta and Li mineralization of Manono-Kitolo (Katanga, Democratic Republic of Congo)[J]. Ore Geology Reviews, 2016, 72:373-390.
[20]NORTON J J, PAGE R L, BROBST D A. Geology of the Hugo pegmatite, Keystone, South Dakota[R]. USGS Professional Papers, 1962, 297-B:49-128.
[21]LONDON D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101:349-383.
[22]MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101:635-643.
[23]HARRIS P D, ROBB L J, TOMKINSON M J. The nature and structural setting of rare-element pegmatites along the northern flank of the Barberton greenstone belt, South Africa[J]. South African Journal of Geology, 1995, 98(1):82-94.
[24]TRUMBULL R B. Tin mineralization in the Archean Sinceni rare element pegmatite field, Kaapvaal Craton, Swaziland[J]. Economic Geology, 1995, 90(3):648-657.
[25]DONSKAYA T V, GLADKOCHUB D P, MAZUKABZOV A M, et al. Early Proterozoic postcollisional granitoids of the Biryusa block of the Siberian craton[J]. Russian Geology and Geophysics, 2014, 55:812-823.
[26]DEBRUYNE D, HULSBOSCH N, VAN WILDERODE J, et al. Regional geodynamic context for the Mesoproterozoic Kibara Belt (KIB) and the Karagwe-Ankole Belt:Evidence from geochemistry and isotopes in the KIB[J]. Precambrian Research, 2015, 264:82-97.
[27]?RNY’ P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6):2005-2026.
[28]CHAPPELL B W, WHITE A J R. Two contrasting granite types:25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4):489-499.
[29]EBY G N. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 1990, 26(1):115-134.
[30]MARTIN R F, DE VITO C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting[J]. The Canadian Mineralogist, 2005, 43(6):2027-2048.
[31]YAN Q, LI J, LI X, et al. Source of the Zhawulong granitic pegmatite-type lithium deposit in the Songpan-Ganzê orogenic belt, Western Sichuan, China:Constraints from Sr-Nd-Hf isotopes and petrochemistry[J]. Lithos, 2020, 378-379:105828.
[32]BRENAN J M, RYERSON F J, SHAW H F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction:experiments and models[J]. Geochimica et Cosmochimica Acta, 1998, 62(19):3337-3347.
[33]TANG M, RUDNICK R L, CHAUVEL C. Sedimentary input to the source of Lesser Antilles lavas:A Li perspective[J]. Geochimica et Cosmochimica Acta, 2014, 144:43-58.
[34]CONDIE K C, KR?ER A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America Special Papers, 2008, 440:281-294.
[35]LAURENT O, MARTIN H, MOYEN J F, et al. The diversity and evolution of late-Archean granitoids:Evidence for the onset of "modern-style" plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 2014, 205:208-235.
[36]SWEETAPPLE M T, COLLINS P L F. Genetic framework for the classification and distribution of archean rare metal pegmatites in the North Pilbara Craton, Western Australia[J]. Economic Geology, 2002, 97(4):873-895.
[37]VAN KRANENDONK M J, HUGH SMITHIES R, HICKMAN A H, et al. Review:secular tectonic evolution of Archean continental crust:interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia[J]. Terra Nova, 2007, 19(1):1-38.
[38]GOSCOMBE B, FOSTER D A, BLEWETT R, et al. Neoarchaean metamorphic evolution of the Yilgarn Craton:A record of subduction, accretion, extension and lithospheric delamination[J]. Precambrian Research, 2019, 335:105441.
[39]MINTS M V. The composite North American Craton, Superior Province:Deep crustal structure and mantle-plume model of Neoarchaean evolution[J]. Precambrian Research, 2017, 302:94-121.
[40]PERCIVAL J, SKULSKI T, SANBORN-BARRIE M, et al. Geology and tectonic evolution of the Superior Province, Canada[R]. GAC special paper, 2012, 49:321-378.
[41]FRIEMAN B M, KUIPER Y D, KELLY N M, et al. Constraints on the geodynamic evolution of the southern Superior Province:U-Pb LA-ICP-MS analysis of detrital zircon in successor basins of the Archean Abitibi and Pontiac subprovinces of Ontario and Quebec, Canada[J]. Precambrian Research, 2017, 292:398-416.
[42]ROLLINSON H R, WHITEHOUSE M. The growth of the Zimbabwe Craton during the late Archaean:an ion microprobe U-Pb zircon study[J]. Journal of the Geological Society, 2011, 168(4):941-952.
[43]KUSKY T M. Tectonic setting and terrane accretion of the Archean Zimbabwe craton[J]. Geology, 1998, 26(2):163-166.
[44]TIMMERMAN M J, DALY J S. Sm-Nd evidence for late Archaean crust formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway[J]. Precambrian Research, 1995, 72(1):97-107.
[45]ZHAO G C, CAWOOD P A, WILDE S A, et al. Review of global 2.1-1.8 Ga orogens:implications for a pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59(1):125-162.
[46]BEGG G C, GRIFFIN W L, NATAPOV L M, et al. The lithospheric architecture of Africa:Seismic tomography, mantle petrology, and tectonic evolution[J]. Geosphere, 2009, 5(1):23-50.
[47]VON KNORRING O, CONDLIFFE E. Mineralized pegmatites in Africa[J]. Geological Journal, 1987, 22(S2):253-270.
[48]GLADKOCHUB D P, DONSKAYA T V, MAZUKABZOV A M, et al. Signature of Precambrian extension events in the southern Siberian craton[J]. Russian Geology and Geophysics, 2007, 48(1):17-31.
[49]NIRONEN M. The Svecofennian Orogen:a tectonic model[J]. Precambrian Research, 1997, 86(1):21-44.
[50]LAHTINEN R, KORJA A, NIRONEN M, et al. Palaeoproterozoic accretionary processes in Fennoscandia[J]. Geological Society London Special Publications, 2009, 318(1):237.
[51]KORJA A, LAHTINEN R, NIRONEN M. The Svecofennian orogen:A collage of microcontinents and island arcs[J]. Geological Society Memoir, 2006, 32:561-578.
[52]LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia:A synthesis[J]. Precambrian Research, 2008, 160(1):179-210.
[53]BINGEN B, NORDGULEN ?, VIOLA G. A four-phase model for the sveconorwegian orogeny, SW Scandinavia[J]. Norsk Geologisk Tidsskrift, 2008, 88(1):43-72.
[54]?RNY’ P. Rare-element granitic pegmatites. Part II:regional to global environments and petrogenesis[J]. Geoscience Canada, 1991, 18(2):68-81.
[55]CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time:Constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3):228-242.
[56]TKACHEV A V. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time[J]. Geological Society, London, Special Publications, 2011, 350(1):7-23.
[57]YANG X M, DRAYSON D, POLAT A. S-type granites in the western Superior Province:a marker of Archean collision zones[J]. Canadian Journal of Earth Sciences, 2019, 56:1409-1436.

备注/Memo

备注/Memo:
收稿日期:2022-11-6;改回日期:2023-2-20。
基金项目:国家自然科学基金委"杰出青年科学基金:岩石学(编号:42025202)"项目资助。
作者简介:熊定一,1998年生,男,硕士研究生,主要从事岩石学和前寒武纪地质研究工作。Email:161158064@smail.nju.edu.cn。
通讯作者:王孝磊,1979年生,男,教授,博士生导师,主要从事岩石学和前寒武纪地质研究工作。Email:wxl@nju.edu.cn。
更新日期/Last Update: 1900-01-01