[1]周曙光,蔡杨,杜建国,等.铜陵天马山硫金矿床矽卡岩矿物学特征及矿石硫同位素地球化学研究[J].华东地质,2023,44(01):51-66.[doi:10.16788/j.hddz.32-1865/P.2023.01.005]
 ZHOU Shuguang,CAI Yang,DU Jianguo,et al.Skarn mineralogical characteristics and ore sulfur isotope geochemistry of Tianmashan sulfur-gold deposit, Tongling area[J].East China Geology,2023,44(01):51-66.[doi:10.16788/j.hddz.32-1865/P.2023.01.005]
点击复制

铜陵天马山硫金矿床矽卡岩矿物学特征及矿石硫同位素地球化学研究()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年01期
页码:
51-66
栏目:
重要矿产资源专辑
出版日期:
2023-04-15

文章信息/Info

Title:
Skarn mineralogical characteristics and ore sulfur isotope geochemistry of Tianmashan sulfur-gold deposit, Tongling area
作者:
周曙光13 蔡杨23 杜建国23 吴硕13 施珂23 李孜腾23
1. 铜陵有色金属集团股份有限公司矿产资源中心, 安徽铜陵 244000;
2. 安徽省地质调查院(安徽省地质科学研究所), 安徽合肥 230001;
3. 安徽省深部资源勘查工程研究中心, 安徽合肥 230001
Author(s):
ZHOU Shuguang13 CAI Yang23 DU Jianguo23 WU Shuo13 SHI Ke23 LI Ziteng23
1. Mineral Resource Center, Tongling Nonferrous Metals Group Holdings Co., Ltd, Tongling 244000, Anhui, China;
2. Geological Survey of Anhui Province(Anhui Institute of Geological Sciences), Hefei 230001, Anhui, China;
3. Engineering Research Center of Deep Resource Exploration of Anhui Province, Hefei 230001, Anhui, China
关键词:
安徽铜陵矿集区天马山硫金矿矽卡岩矿物硫同位素成矿条件
Keywords:
Tongling ore concentration area AnhuiTianmashan sulfur-gold depositskarn mineralssulfur isotopeore-forming condition
分类号:
P575.1P618.51
DOI:
10.16788/j.hddz.32-1865/P.2023.01.005
摘要:
天马山硫金矿是铜陵矿集区典型的层控热液叠加改造型矿床,层状矿体中发育大量的矽卡岩矿物。为查明该矿床中矽卡岩矿物的类型及形成环境,探讨矽卡岩与硫、金成矿之间的关系,对主要的矽卡岩矿物开展了矿物学及矿物化学研究,并对矿石进行了硫同位素地球化学研究。研究表明:矿区内的矽卡岩矿物以石榴子石和辉石为主,其中石榴子石以钙铁榴石为主,属于钙铁榴石-钙铝榴石固熔体系列(Gro0~18.73And80.54~99.00Spe+Pyr+Alm0.54~1.47);辉石以透辉石为主,其次为钙铁辉石,属于透辉石-钙铁辉石系列(Di62.35~97.65Hd1.89~36.27Jo0.31~1.55)。天马山硫金矿的矿物组合(钙铁辉石+透辉石)属于氧化型矽卡岩,表明矽卡岩形成于相对高温和高氧逸度的条件。石榴子石和辉石端元组分特征及辉石Mn/Fe值(0.02~0.07)具有典型的矽卡岩型铜、金矿床特征。矿石硫同位素具有岩浆源的特征,与区内燕山期岩浆-成矿作用形成的矿石一致,而明显区别于喷流-沉积作用形成的矿石,显示成矿作用与燕山期岩浆活动具有密切的成因联系。燕山期中酸性岩浆交代碳酸盐岩围岩形成大量矽卡岩,矽卡岩矿物的形成增加了岩石的孔隙度和渗透率,为晚期硫、金矿床的形成提供了有利条件。
Abstract:
The Tianmashan sulfur-gold deposit is a typical stratabound hydrothermal superimposed reformed deposit in the Tongling ore concentration area and hosts abundant skarn minerals in major bedded ore body. In order to ascertain the skarn minerals types and ore-forming setting of Tianmashan deposit and explore the relationship between skarnization and mineralization, the mineralogy and mineral chemistry of main skarn minerals, and the geochemistry of its sulfur isotope were studied. The research shows that the skarn minerals in Tianmashan deposit are mainly comprised of garnet and pyroxene. Most of garnet are andradites, belonging to andradite-grossular series (Gro0~18.73And80.54~99.00Spe+Pyr+Alm0.54~1.47). Pyroxene is dominated by diopside, followed by hedenbergite, thus can be listed into diopside-hedenbergite series (Di62.35~97.65Hd1.89~36.27Jo0.31~1.55). The mineral assemblage(andradite and diopside)in Tianmashan sulfur-gold deposit is attributed as oxidized skarn, indicating the skarn diagenetic conditions of relatively high temperature and high oxygen fugacity. The characteristics of the end-member components in garnet and pyroxene, and the lower pyroxene Mn/Fe ratio (0.02~0.07) were similar to those in the typical skarn copper and gold deposits. The sulfur isotopes of ore with magmatic hearth features were consistent with Yanshanian magmatic-metallogenic ore, but obviously different from sedimentary exhalative deposit, indicating that the mineralization was closely related to Yanshanian magmatic activity. Due to the metasomatism of Yanshanian acidic magma, a large amount of skarn was formed in the carbonate surrounding rocks. The formation of skarn minerals increased the porosity and permeability of rock, which were conducive to the later formation of sulfur-gold deposits.

参考文献/References:

[1] 常印佛, 刘湘培, 吴言昌. 长江中下游铜铁成矿带[M]. 北京:地质出版社, 1991:1-359.CHANG Y F, LIU X P, WU Y C. The copper-iron belt of the Lower and Middle Reaches of the Changjiang River[M]. Beijing:Geological Publishing House, 1991:1-359.
[2] 翟裕生, 姚书振, 林新多, 等. 长江中下游地区铁铜(金)成矿规律[M]. 北京:地质出版社, 1992:12-35.ZHAI Y S, YAO S Z, LIN X D, et al. Metallogenic regularity of iron, copper and gold in the Lower and Middle Reaches of the Changjiang River[M]. Beijing:Geological Publishing House, 1992:12-35.
[3] 周涛发, 范裕, 袁峰. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 2008, 24(8):1665-1678.ZHOU T F, FAN Y, YUAN F. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 2008, 24(8):1665-1678.
[4] 鲁杏, 张玲玲, 崔先文, 等. 安徽淮北前常东铜铁矿区三维电性结构特征[J]. 华东地质, 2022, 43(3):268-275.LU X, ZHANG L L, CUI X W, et al. 3D electrical structure of the Qianchang East copper iron mining area, Anhui Province[J]. East China Geology, 2022, 43(3):268-275.
[5] 谢金金,陶春军,余有林.歙县鲍坑地区金矿成矿地质条件及找矿远景分析[J].华东地质, 2022, 43(2):196-204.XIE J J, TAO C J, YU Y L. Metallogenic conditions and ore-prospecting of gold deposit in Baokeng area, Shexian County[J]. East China Geology, 2022, 43(2):196-204.
[6] 常印佛, 刘学圭. 关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例[J].矿床地质, 1983(1):11-20.CHANG Y F, LIU X G. On strata-bound skarn deposits[J]. Mineral Deposits, 1983(1):11-20.
[7] 吴才来, 周珣若, 黄许陈, 等. 铜陵地区中酸性侵入岩年代学研究[J]. 岩石矿物学杂志, 1996, 15(4):299-306.WU C L, ZHOU X R, HUANG X C, et al. 40Ar/39Ar chronology of intrusive rocks from Tongling[J]. Acta Petrologica et Mineralogica, 1996,15(4):299-306.
[8] 吴才来, 高前明, 国和平, 等. 铜陵中酸性侵入岩成因及锆石SHRIMP定年[J]. 岩石学报, 2010, 26(9):2630-2652.WU C L, GAO Q M, GUO H P, et al. Petrogenesis of the intermediate-acid intrusive rocks and zircon SHRIMP dating in Tongling Anhui China[J]. Acta Petrologica Sinica, 2010, 26(9):2630-2652.
[9] 赵斌, 赵劲松. 长江中下游地区若干铁铜(金)矿床中块状及脉状钙质夕卡岩的氧、锶同位素地球化学研究[J]. 地球化学, 1997, 26(5):34-53.ZHAO B, ZHAO J S. O and Sr isotopic geochemistry for massive and vein calcareous skarns from some iron-copper (gold) deposits along the Middle-Lower Reaches of the Yangtze River[J]. Geochimica, 1997, 26(5):34-53.
[10]周涛发, 岳书仓, 袁峰, 等. 长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究[J]. 中国科学(D辑), 2000, 30(S1):122-128.ZHOU T F, YUE S C, YUAN F, et al. Two series of copper-gold deposits in the middle and lower reaches of the Yangtze River area (MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems[J]. Science in China (Series D), 2000, 30(S1):122-128.
[11]周涛发, 范裕, 王世伟, 等. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 2017, 33(11):3353-3372.ZHOU T F, FAN Y, WANG S W, et al. Metallogenic regularity and metallogenic model of the Middle-Lower Yangtze River Valley Metallogenic Belt[J]. Acta Petrologica Sinica, 2017, 33(11):3353-3372.
[12]蒙义峰, 杨竹森, 曾普胜, 等. 铜陵矿集区成矿流体系统时限的初步厘定[J]. 矿床地质, 2004, 23(3):271-280.MENG Y F, YANG Z S, ZENG P S, et al.[J]. Tentative temporal constraints of ore-forming fluid systems in Tongling Metallogenic Province[J]. Mineral Deposits, 2004, 23(3):271-280.
[13]吴淦国, 张达, 狄永军, 等. 铜陵矿集区侵入岩SHRIMP锆石U-Pb年龄及其深部动力学背景[J]. 中国科学(D辑), 2008, 38(5):630-645.WU G G, ZHANG D, DI Y J, et al. SHRIMP zircon U-Pb dating of the intrusives in the Tongling metallogenic cluster and its dynamic setting[J]. Science in China (Series D), 2008, 38(5):630-645.
[14]谢建成, 杨晓勇, 杜建国, 等. 铜陵地区中生代侵入岩LA-ICP-MS锆石U-Pb年代学及Cu-Au成矿指示意义[J]. 岩石学报, 2008, 24(8):1782-1800.XIE J C, YANG X Y, DU J G, et al. Zircon U-Pb geochronology of the Mesozoic intrusive rocks in the Tongling region:Implications for copper-gold mineralization[J]. Acta Petrologica Sinica, 2008, 24(8):1782-1800.
[15]谢建成, 杨晓勇, 肖益林, 等. 铜陵矿集区中生代侵入岩成因及成矿意义[J]. 地质学报, 2012, 86(3):423-459.XIE J C, YANG X Y, XIAO Y L, et al. Petrogenesis of the Mesozoic intrusive rocks from the Tongling ore cluster region:the metallogenic significance[J]. Acta Geologica Sinica, 2012, 86(3):423-459.
[16]毛景文, 邵拥军, 谢桂青, 等. 长江中下游成矿带铜陵矿集区铜多金属矿床模型[J]. 矿床地质, 2009, 28(2):109-119.MAO J W, SHAO Y J, XIE G Q, et al. Mineral deposit model for porphyry-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt[J]. Mineral Deposits, 2009, 28(2):109-119.
[17]徐晓春, 楼金伟, 梁建峰, 等. 安徽铜陵矿集区矿床勘查与地质研究新进展[J]. 安徽地质, 2011, 21(2):119-130.XU X C, LOU J W, LIANG J F, et al. Latest progress in ore deposit exploration and geological research in the Tongling ore concentration area, Anhui[J]. Geology of Anhui, 2011, 21(2):119-130.
[18]徐晓春, 左续, 何俊, 等. 安徽铜陵地区晚中生代早、晚两期侵入岩的地质和地球化学特征[J]. 高校地质学报, 2018, 24(3):325-339.XU X C, ZUO X, HE J, et al. Geological and geochemical characteristics of the intrusive rocks of early and late stage during Late Mesozoic in Tongling District, Anhui Province[J]. Geological Journal of China Universities, 2018, 24(3):325-339.
[19]王次松, 吴才来, 郑坤, 等. 铜陵凤凰山矿田成矿时代及成矿物质来源[J]. 矿床地质, 2018, 37(6):1195-1216.WANG C S, WU C L, ZHENG K, et al. Ore-forming ages and sources of metallogenic materials of Fenghuangshan ore field in Tongling[J]. Mineral Deposits, 2018, 37(6):1195-1216.
[20]施珂, 杜建国, 万秋, 等. 安徽铜陵矿集区中生代侵入岩体年代学研究及其成矿指示意义[J]. 地质学报, 2019, 93(5):1096-1112.SHI K, DU J G, WAN Q, et al. Chronology study of the Mesozoic intrusive rocks in the Tongling ore-cluster region, Anhui, and its metallogenic significance[J]. Acta Geologica Sinica, 2019, 93(5):1096-1112.
[21]夏元法. 试论天马山硫金矿床的成矿物质来源[J]. 矿床与地质, 1999, 13(1):34-38.XIA Y F. A tentative study on the origin of ore-forming materials of Tianmashan sulfur-gold deposit[J]. Mineral Resources and Geology, 1999, 13(1):34-38.
[22]俞沧海. 安徽铜陵天马山硫金矿床物质来源探讨[J]. 黄金地质, 2000, 6(1):44-48.YU C H. Study on the origin of materials of Tianmashan sulfur-gold deposit in Tongling, Anhui[J]. Gold Geology, 2000, 6(1):44-48.
[23]俞沧海, 袁小明. 铜陵天马山硫金矿床地质特征及成因探讨[J]. 矿产与地质, 2002, 16(2):74-77.YU C H, YUAN X M. Geological features and study on genesis of Tianmashan sulfur-gold deposit[J]. Mineral Resources and Geology, 2002, 16(2):74-77.
[24]邵毅, 张遵忠, 吴昌志, 等. 安徽铜陵马山层控金铜硫矿床成因[J]. 地质找矿论丛, 2010, 25(4):310-318, 335.SHAO Y, ZHANG Z Z, WU C Z, et al.Genesis of the Mashan Au-Cu-S deposit, Tongling, Anhui Province[J]. Contributions to Geology and Mineral Resources Research, 2010, 25(4):310-318, 335.
[25]EINAUDI M T, MEINERT L D, NEWBERRY R J. Skarn deposits[J]. Economic Geology, 1981:317-391.
[26]EINAUDI M T, BURT D M. Introduction, terminology, classification, and composition of skarn deposits[J]. Economic Geology, 1982, 77(4):745-754.
[27]SMITH M P, HENDERSON P, JEFFRIES T, et al. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK:Constraints on processes in a dynamic hydrothermal system[J]. Journal of Petrology, 2004, 45(3):457-484.
[28]SOMARIN A K. Garnet composition as an indicator of Cu mineralization:evidence from skarn deposits of NW Iran[J]. Journal of Geochemical Exploration, 2004, 81(1):47-57.
[29]MEINERT L, DIPPLE G, NICOLESCU S. World skarn deposits[C]//Economic Geology:100th Anniversary Volume. El Paso:Economic Geology Publishing Co., 2005:299-336.
[30]华东冶金地质勘查局812地质队. 安徽省铜陵市马山金(硫)矿床普查-详查地质报告[R]. 铜陵:华东冶金地质勘查局812地质队, 1992.No. 812 Geological Team, East China Metallurgical Bureau of Geological and Exploration. The survey-detailed geological report of Mashan gold (sulfur) deposit in Tongling, Anhui Province[R]. Tongling:No. 812 Geological Team, East China Metallurgical Bureau of Geological and Exploration, 1992.
[31]杨秋荣, 王金芳, 冯景志, 等. 安徽铜陵天马山金硫矿床地质地球化学特征[J]. 地球学报, 2010, 31(2):203-208.YANG Q R, WANG J F, FENG J Z, et al. Geological and geochemical characteristics of the Tianmashan Au-S deposit in Tongling, Anhui Provnice[J]. Acta Geoscientica Sinica, 2010, 31(2):203-2080.
[32]赵劲松, NEWBERRY R J. 对柿竹园矽卡岩成因及其成矿作用的新认识[J]. 矿物学报, 1996, 16(4):442-449.ZHAO J S, NEWBERRY R J. Novel knowledge on the origin and mineralization of skarns from Shizhuyuan[J]. Acta Mineralogica Sinica, 1996, 16(4):442-449.
[33]TITLEY S R. "Pyrometasomatic":An alteration type[J]. Economic Geology, 1973, 68(8):1326-1329.
[34]BURTON J C, TAYLOR L A. The fO2-T and fS2-T sability relations of hedenberigite and of hedenbergite joh-annsenite solid soulutions[J]. Economic Geology, 1982, 77(4):764-783.
[35]MEINERT L D, HEFTON K K, MAYES D, et al. Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya[J]. Economic Geology, 1997, 92(5):509-534.
[36]CALAGARI A A, HOSSEINZADEH G. The mineralogy of copper-bearing skarn to the east of the Sungun-Chay river, East-Azarbaidjan, Iran[J]. Journal of Asian Earth Sciences, 2006, 28(4):423-438.
[37]SATO K. Tungsten skarn deposit of the Fujigatani mine, southwest Japan[J]. Economic Geology, 1980, 75(7):1066-1082.
[38]BROWN P E, ESSENE E J. Activity variations attending tungsten formation, Pine Creek, California[J]. Nederlands Tijdschrift Voor Geneeskunde, 1985, 89(4):358-369.
[39]KAWK T A. Hydrothermal alteration in carbonate-replacement deposit[J]. Geological Association of Canada Short Course Notes, 1994, 11:381-402.
[40]宋国学, 秦克章, 李光明. 长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、O、S同位素研究[J]. 岩石学报, 2010, 26(9):2768-2782.SONG G X, QIN K Z, LI G M. Study on the fluid inclusions and S-H-O isotopic compositions of skarn-porphyry-type W-Mo deposits in Chizhou area in the Middle Lower Yangtze Valley[J]. Acta Petrologica Sinica, 2010, 26(9):2768-2782.
[41]GASPAR M, KNAACK C, MEINERT L D. REE in skarn system:A LA-ICP-MS study of garnets from the Crown Jewel gold deposits[J]. Geochimica et Cosmochimica Acta, 2008, 72(1):185-205.
[42]陈雷, 秦克章, 李光明, 等.西藏冈底斯南缘努日铜钨钼矿床地质特征与矽卡岩矿物学研究[J]. 矿床地质, 2012, 31(3):417-437.CHEN L, QIN K Z, LI G M, et al. Geological and skarn mineral characteristics of Nuri Cu-W-Mo deposit in southeast Gangdese, Tibet[J]. Mineral Deposits, 2012, 31(3):417-437.
[43]LU H Z. Mineralizaiton and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 2003, 98(5):955-974.
[44]MISRA K C. Understanding Mineral Deposits[M]. Amsterdam:Kluwer Academic, 2000.
[45]ZAW K. Formation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania:Evidence from mineral chemistry and stable isotopes[J]. Economic Geology, 2000, 95(6):1215-1230.
[46]XIE G Q, MAO J W, ZHU Q Q, et al. Geochemical constrain.ts on Cu-Fe and Fe skarn deposits in the Edong district, Middle-Lower Yangtze River metallogenic belt, China[J]. Ore Geology Reviews, 2015, 64:425-444
[47]刘晓菲, 袁顺达, 双燕, 等. 湖南金船塘锡铋矿床石榴子石原位LA-ICP-MS稀土元素分析及其意义[J]. 岩石学报, 2014, 30(1):163-177LIU X F, YUAN S D, SHUANG Y, et al. In situ LA-ICP-MS REE analyses of the skarn garnets from the Jinchuantang tin-bismuth deposit in Hunan Province, and their significance[J]. Acta Petrologica Sinica, 2014, 30(1):163-177.
[48]彭惠娟, 李洪英, 裴荣富, 等. 云南中甸红牛-红山矽卡岩型铜矿床矿物学特征与成矿作用[J]. 岩石学报, 2014, 30(1):237-256.PENG H J, LI H Y, PEI R F, et al. Mineralogical characteristics and metallogeny of the Hongniu-Hongshan copper deposit in Zhongdian area, Yunnan Province, China[J]. Acta Petrologica Sinica, 2014, 30(1):237-256.
[49]朱乔乔, 谢桂青, 李伟, 等. 湖北金山店大型矽卡岩型铁矿石榴子石原位微区分析及其地质意义[J]. 中国地质, 2014, 41(6):1944-1963.ZHU Q Q, XIE G Q, LI W, et al. In situ analysis of garnets from the Jinshandian iron skarn deposit, Hubei Province, and its geological implications[J]. Geology in China, 2014, 41(6):1944-1963.
[50]王琦, 艾永富. 内蒙古白音诺铅锌矿床富锰单斜辉石与矿化的关系[J]. 北京大学学报(自然科学版), 1995, 31(2):224-228.WANG Q, AI Y F. Study on the Relationship between Mn-rich Clinopyroxene and Metallization in the Baiyinnuo Pb-Zn Deposit, Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1995, 31(2):224-228.
[51]梁祥济. 钙铝-钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 1994, 13(4):342-353.LIANG X J. Garnets of grossular-andradite series:their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica, 1994, 13(4):342-353.
[52]梁祥济, 王福生. 接触交代矽卡岩型金矿床形成机理的实验研究[J]. 黄金地质, 2000, 6(1):1-14.LIANG X J, WANG F S. Experimental study on the formation mechanism of the contact metasomatic skarn gold deposits[J]. Gold Geology, 2000, 6(1):1-14.
[53]田世洪, 侯增谦, 杨竹森, 等. 安徽铜陵马山金硫矿床稀土元素和稳定同位素地球化学研究[J]. 地质学报, 2007, 81(7):929-938.TIAN S H, HOU Z Q, YANG Z S, et al. REE and Stable Isotope Geochemical Characteristics of the Mashan Au-S Deposit in Tongling, Anhui Province[J]. Acta Geologica Sinica, 2007, 81(7):929-938.
[54]唐永成, 吴言昌, 储国正, 等. 安徽沿江地区铜金多金属矿床地质[M]. 北京:地质出版社, 1998:1-351.TANG Y C, WU Y C, CHU G Z, et al. Geology of copper-gold polymetallic deposits in the along-Changjiang area of Anhui Province[M]. Beijing:Geological Publishing House, 1998:1-351.
[55]陈彬. 新桥硫多金属矿床含硫磁铁矿体地质特征及成因探讨[J]. 化工矿产地质, 2003, 25(3):173-178.CHEN B. Geological features and genetic study of the containing sulfur-magnatite orebody of Xinqiao deposit[J]. Geology of Chemical Minerals, 2003, 25(3):173-178.
[56]季克俭. 热液矿床成矿元素降低场及其意义[C]//国际交流地质学术论文集(第四集). 北京:地质出版社, 1985:205-214.JI K J. Ore-forming elements depleted zone around hydrothermal deposits, and its significance[C]//Scientific papers on geology for international exchange (Vol. 4). Beijing:Geological Publishing House, 1985:205-214.
[57]林文蔚, 赵一鸣, 蒋崇俊. 矽卡岩矿床中共生单斜辉石-石榴子石特征及其地质意义[J]. 矿床地质, 1990, 9(3):195-207.LIN W W, ZHAO Y M, JIANG C J. Characteristics of paragenetic clinopyroxene-garnet pairs in skarn deposits and their geological significance[J]. Mineral Deposits, 1990, 9(3):195-207.
[58]洪为, 张作衡, 赵军, 等. 新疆西天山查岗诺尔铁矿床矿物学特征及其地质意义[J]. 岩石矿物学杂志, 2012, 31(2):191-211.HONG W, ZHANG Z H, ZHAO J, et al. Mineralogy of the Chagangnuoer iron deposit in Western Tianshan Mountains, Xinjiang, and its geological significance[J]. Acta Petrologica et Mineralogica, 2012, 31(2):191-211.
[59]田明君, 李永刚, 万浩章, 等. 江西永平铜矿矽卡岩矿物学特征及其地质意义[J]. 岩石学报, 2014, 30(12):3741-3758.TIAN M J, LI Y G, WAN H Z, et al. Characteristics of skarn minerals in Yongping copper deposit, Jiangxi Province, and geological significances[J]. Acta Petrologica Sinica, 2014, 30(12):3741-3758.
[60]MEINERT L D. Skarns and skarn deposits[J]. Geoscience Canada, 1992, 19(4):145-163.
[61]艾永富, 金玲年. 石榴石成分与矿化关系的初步研究[J]. 北京大学学报, 1981, 17(1):83-90.AI Y F, JIN L N. The study of the relationship between the mineralization and the garnet in the skarn ore deposits[J]. Journal of Peking University, 1981, 17(1):83-90.
[62]NAKANO T, YOSHINO T, SHIMAZAKI H, et al. Pyroxene composition as an indicator in the classification of skarn deposits[J]. Economic Geology, 1994, 89(7):1567-1580.
[63]赵一鸣, 张轶男, 林文蔚. 我国矽卡岩矿床中辉石和似辉石特征及其与金属矿化的关系[J]. 矿床地质, 1997, 16(4):318-329.ZHAO Y M, ZHANG Y N, LIN W W. Characteristics of pyroxenes and pyroxenoids in skarn deposits of China and their relationship with metallization[J]. Mineral Deposits, 1997, 16(4):318-329.
[64]KARIMZADEH S A. Garnet composition as an indicator of Cu mineralization:Evidence from skarn deposits of NW Iran[J]. Journal of Geochemical Exploration, 2004, 81(1):47-57.
[65]KARMZADEH S A. Garnetization as a ground preparation process for copper mineralization:Evidence from the Mazraeh skarn deposit, Iran[J]. International Jounral of Earth Sciences, 2010, 99(2):343-356.

备注/Memo

备注/Memo:
收稿日期:2022-8-25;改回日期:2022-11-22。
基金项目:安徽省自然资源科技项目"安庆—池州—铜陵地区深部成矿背景及深部找矿预测研究(编号:2020-k-13)"、安徽省重点研究与开发项目"铜陵大型资源基地接替资源勘查研究(编号:201904a07020077)"和安徽省地质调查院培育计划项目"安徽铜陵狮子山矿田中生代侵入岩岩石包体对深部成矿作用的指示研究(编号:20KJ-04)"联合资助。
作者简介:周曙光,1966年生,男,高级工程师,大学本科,主要从事矿产地质勘查及研究工作。Email:932753432@qq.com。
通讯作者:蔡杨,1986年生,男,高级工程师,博士,主要从事矿产地质勘查及研究工作。Email:youngtsai@outlook.com。
更新日期/Last Update: 1900-01-01