[1]潘仙敏,杨 强,罗 通.安徽西部霍邱周油坊铁矿床地球化学特征及成因[J].华东地质,2016,37(01):52.[doi:10.16788/j.hddz.32-1865/P.2016.01.007]
 PAN Xian-min,YANG Qiang,LUO Tong.Geochemical characteristics and genesis of the Zhouyoufang iron deposit in Huoqiu County, western Anhui Province[J].East China Geology,2016,37(01):52.[doi:10.16788/j.hddz.32-1865/P.2016.01.007]
点击复制

安徽西部霍邱周油坊铁矿床地球化学特征及成因()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
37
期数:
2016年01期
页码:
52
栏目:
矿床地质
出版日期:
2016-03-15

文章信息/Info

Title:
Geochemical characteristics and genesis of the Zhouyoufang iron deposit in Huoqiu County, western Anhui Province
文章编号:
2096-1871(2016)01-052-09
作者:
潘仙敏1杨 强2罗 通3
(1江西省地质矿产勘查开发局916大队,九江 332100)(2安徽省地质矿产勘查局311地质队,安庆 246000)(3安徽省淮北矿业集团海孜煤矿,淮北 235000)
Author(s):
PAN Xian-min1YANG Qiang2LUO Tong3
(1.No.916 Geological Party, Jiangxi Bureau of Geology and Mineral Exploration, Jiujiang 332100, China)(2. No.311 Geological Party, Anhui Bureau of Geology and Mineral Exploration, Anqing 246000, China)(3. Haizi Coal Mine Huaibei Mining Group Co., Ltd. Huaibei 235000, China)
关键词:
铁矿床富铁矿地球化学特征周油坊霍邱
Keywords:
iron deposit iron-rich ore geochemical characteristics Zhouyoufang Huoqiu County
分类号:
P618.31;P618.7;P595
DOI:
10.16788/j.hddz.32-1865/P.2016.01.007
文献标志码:
A
摘要:
周油坊铁矿床位于华北地台南缘皖西霍邱铁矿田中部,含矿地层位于新太古界变质岩系上部,矿石中的铁矿物主要为镜铁矿和磁铁矿。通过研究该矿床矿石和围岩的地球化学特征,探讨矿床的成矿物质来源、成矿古地理环境及富铁矿的成因。结果表明,周油坊矿床的主要成矿物质来源于混合了海底火山热液的高温海水,形成于大洋岛弧与大陆之间有陆源物质输入的弧后陆前还原海洋环境,初步认为该矿床为原始沉积变质型富铁矿。
Abstract:
The Zhouyoufang iron deposit in the central part of the Huqiu iron orefield of western Anhui Province is tectonically located in the southern margin of North China platform, with ore-bearing strata developed in the upper part of the Neo-Archaean metamorphic series. Its iron-bearing minerals include specularite and magnetite. The study discussed the ore-forming material sources, metallogenic paleogeographic environment and genesis of the deposit through studying of the geochemical characteristics for ores and county rocks. The results show that the main ore-forming material sources of the Zhouyoufang iron deposit derived mainly from the high temperature seawater mixed with submarine volcanic hydrothermal and the deposit formed in a reducing marine environment of back-arc and foreland between oceanic island arc and continent. It can be preliminarily concluded that the deposit was a primary sedimentogenic metamorphic iron-rich deposit.

参考文献/References:

[1]Klein C. Some precambrian banded iron-formations(BIFs)from around the world:their age,geologic setting,mineralogy,metamorphism,geochemistry,and origins[J]. American Mineralogist, 2005, 90(10): 1473-1499.
[2]Gross G A. A CLASSIFICATION OF IRON FORMATIONS BASED ON DEPOSITIONAL ENVIRONMENTS[J]. Canadian Mineralogist, 1980, 18(2): 215-222.
[3]沈福农,炎金才,于凤池,等.皖西霍邱群地层层序与变质作用[J].西北大学学报,1982,(特刊):84-98.
[4]岳元珍.霍邱群的矿物特征及其变质作用[J].中国地质科学院南京地质矿产研究所所刊,1982,3(3):1-29.
[5]亣润章,姚光炎.论霍邱群变质作用特征[J].中国地质科学院南京地质矿产研究所所刊,1982,3(3):30-46.
[6]亓润章.霍邱群BIF成因讨论[J].中国地质科学院南京地质矿产研究所所刊,1987,8(1):1-20.
[7]WAN Yusheng, DONG Chunyan, WANG Wei, et al. Archean basement and a paleoproterozoic collision orogen in the huoqiu area at the southeastern margin of North China craton: evidence from sensitive high resolution ion Micro-Probe U-Pb zircon geochronology[J]. Acta Geologica Sinica(English Edition), 2010, 84(1): 91-104.
[8]杨晓勇,王波华,杜贞保,等.论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制[J].岩石学报,2012,28(11):3476-3496.
[9]黄华,张连昌,刘显凡,等.霍邱矿田李老庄铁矿地质与地球化学特征及对沉积环境的指示[J].岩石学报,2013,29(7):2593-2605.
[10]刘磊,杨晓勇.安徽霍邱BIF铁矿地球化学特征及其成矿意义:以班台子和周油坊矿床为例[J].岩石学报,2013,29(7):2551-2566.
[11]尹青青,丁杨,徐林松,等.安徽霍邱重新集铁矿地质特征及找矿预测[J].资源调查与环境,2013,34(2):122-126.
[12]Mclennan S M. Rare earth elements in sedimentary rocks;influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
[13]Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 2004, 222(1): 43-60.
[14]Spier C A, Oliveira S, Siala N, et al. Geochemistry and Genesis of the banded Iron formations of the Caue Formation,Quadrilatero Ferriero,Minas Gerais,Brazil[J]. Precambrian Research, 2007, 152(3/4): 170-206.
[15]Planavsky N, Bekker A, Rouxel O J, et al. Rare earth element and Yttrium compositions of archean and paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition[J]. Geochimica Et Cosmochimica Acta, 2010, 74(22): 6387-6405.
[16]Danielson A, M P, Dulski P. The Europium anomalies in banded Iron formations and the thermal history of the oceanic crust[J]. Chemical Geology, 1992, 97(1/2): 89-100.
[17]Bau M, Dulski P. Comparing Yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
[18]Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica Et Cosmochimica Acta, 1999, 63(5): 627-643.
[19]Kato Y, Yamaguchi K E, Ohmoto H. Rare earth elements in Precambrian banded iron formations: Secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen[M]. 2006:269-289.
[20]Nozaki Y, ZHANG Jing, Amakawa H. The fractionation between Y and Ho in the Marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340.
[21]Lawrence M G, Greig A, Collerson K D, et al. Direct quantification of rare earth element concentrations in natural waters by ICP-MS[J]. Applied Geochemistry, 2006, 21(5): 839-848.
[22]Byrne R H, Lee J H. Comparative Yttrium and rare earth element chemistries in seawater[J]. Marine Chemistry, 1993, 44(2/4): 121-130.
[23]Widdel F, Schnell S, Heising S, et al. Ferrous Iron oxidation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362(6423): 834-836.
[24]Kappler A, Pasquero C, Konhauser K O, et al. Deposition of banded Iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria[J]. Geology, 2005, 33(11): 865-868.
[25]Bhatia, R M. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983,(2): 611-627.
[26]Murray, W R. Chemical criteria to identify the depositional environment of chert:general principles and applications[J]. Sedimentary Geology, 1994, 90(3): 213-232.
[27]Allegre C J, Minster J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
[28]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997:65-66.
[29]Bau M, Dulski P. Distribution of Yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa[J]. Precambrian Research, 1996, 79(1): 37-55.
[30]Armstrong H A, Owen A W, Floyd J D. Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: implications for origin and significance to the Caledonian Orogeny[J]. Journal of the Geological Society, 1999, 156(3): 549-560.
[31]王中刚,于学元,赵振华.稀土元素地球化学[M].北京:科学出版社,1989:284-285.
[32]Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica Et Cosmochimica Acta, 1994, 58(6): 1567-1579.
[33]Bau M, Dulski P, Moller P. Yttrium and Holmium in South pacific seawater:vertical distribution and possible fractionation mechanisms[J]. Oceanographic Literature Review, 1995, 11(1): 1-15.
[34]Nozaki Y, Alibo D S, Amakawa H, et al. Dissolved rare earth elements and hydrography in the Sulu Sea[J]. Geochimica Et Cosmochimica Acta, 1999, 63(15): 2171-2181.
[35]Alibo D S, Nozaki Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation[J]. Geochimica Et Cosmochimica Acta, 1999, 63(3/4): 363-372.
[36]Bekker A, Slack J F, Planavsky N, et al. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes[J]. Economic Geology, 2010, 105(3): 467-508.

备注/Memo

备注/Memo:
基金项目:江西省地质矿产勘查开发局地质科研项目(编号:201187)资助。第一作者简介:潘仙敏,男,1990年生,助理工程师,主要从事固体矿产勘查、区域地质调查、科研及成矿预测工作。
更新日期/Last Update: 2016-03-31