[1]周龙全,李光来,唐 傲,等.赣南地区石英脉型钨矿成矿流体特征[J].华东地质,2016,37(02):136-146.[doi:10.16788/j.hddz.32-1865/P.2016.02.008]
 ZHOU Long-quan,LI Guang-lai,TANG Ao,et al.Ore-forming fluids characteristics of quartz-vein tungsten deposits in southern Jiangxi Province[J].East China Geology,2016,37(02):136-146.[doi:10.16788/j.hddz.32-1865/P.2016.02.008]
点击复制

赣南地区石英脉型钨矿成矿流体特征()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
37
期数:
2016年02期
页码:
136-146
栏目:
矿床地质
出版日期:
2016-06-15

文章信息/Info

Title:
Ore-forming fluids characteristics of quartz-vein tungsten deposits in southern Jiangxi Province
文章编号:
2096-1871(2016)02-136-11
作者:
周龙全李光来唐 傲苏 晔
(东华理工大学核资源与环境省部共建国家重点实验室培育基地,南昌 330013)
Author(s):
ZHOU Long-quan LI Guang-lai TANG Ao SU Ye
(State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China Institute of Technology, Nanchang 330013,China)
关键词:
石英脉型钨矿 成矿流体 赣南地区
Keywords:
quartz-vein type tungsten deposit ore-forming fluid southern Jiangxi Province
分类号:
P611
DOI:
10.16788/j.hddz.32-1865/P.2016.02.008
文献标志码:
A
摘要:
赣南是我国钨矿床最密集的地区,尤以石英脉型钨矿最为发育。本文通过分析近年来该区石英脉型钨矿流体包裹体类型、流体包裹体特征、显微测温、激光拉曼光谱等方面的最新成果,结合碳、氢、氧及锶同位素的研究成果,探讨赣南石英脉型钨矿的流体特征,重点探讨石英脉型钨矿形成过程中的流体演化。认为赣南石英脉型钨矿成矿流体主要来源于岩浆水,流体演化始于高温高盐度的岩浆—热液过渡阶段,与黑钨矿沉淀密切相关的流体温度主要集中于260~360 ℃,盐度主要集中于4~9 wt% NaCl eq.,属中—低盐度、富含SiO2、挥发组分及多种成矿元素的热液体系; 矿质主要以流体沸腾和混合作用为主,自然冷却仅为少数矿床的主要矿石沉淀机制。
Abstract:
Southern Jiangxi is one important cluster of tungsten deposits in China, especially for hosting well developed quartz-vein tungsten deposits. Through analyzingthe latest research achievements of fluid inclusion types, ore-forming fluids characteristics of the quartz-veins tungsten deposit, microthermometry and Raman spectroscopy, and combined with research results of C, H, O and Sr isotope compositions, this study discussed the characteristics of ore-forming fluids of quartz-vein tungsten deposits in southern Jiangxi Province, with an emphasis on the fluid evolution during the mineralization of quartz-vein tungsten deposits. The ore-forming fluids indicated by this study would originate from magmatic waters with the ore-forming fluid evolution beginning at magmatic hydrothermal transitional stage of high temperature and high salinity. The temperature and salinity of fluids related to wolframite mineralization are around 260~360℃ and 4~9 wt%NaCl eq., respectively, suggesting that the ore-forming fluids belonged to a mid-low salinity hydrothermal system enriched in SiO2, volatile components and ore-forming elements. The ore-forming mechanism in this area was dominated by fluid boiling and mixing, with minor deposits resulting from the ore precipitation due to fluid cooling.

参考文献/References:

[1] 华仁民,李光来,张文兰,等.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质,2010,29(1):9-23.

[2] Roedder E. Fluid inclusions[J]. Mineralogical Society of America, Reviews in Mineralogy, 1984,12: 644.
[3] Wilkinson J J. Fluid inclusions in hydrothermal ore deposits[J]. Lithos, 2001, 55(1/4): 229-272.
[4] 张文淮,陈紫英.流体包裹体地质学[M].北京:中国地质大学出版社,1993:1-242.
[5] 池国祥,赖健清.流体包裹体在矿床研究中的作用[J].矿床地质,2009,28(6):850-855.
[6] 卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004:406-419.
[7] Naumov V B, Dorofeev V A, Mironova O F. Physicochemical parameters ofthe formation of hydrothermal deposits:a fluid inclusion study. I.Tin and Tungsten Deposits[J]. Geochemistry International, 2011, 49(10): 1002-1021.
[8] Bodnar R J, Lecumberri-Sanchez P, Moncada D, et al. Fluid inclusionsin hydrothermal ore deposits[C]//Treatise on Geochemistry(Second Edition), Geochemistry of Mineral Deposits, 2014: 119-142.
[9] 倪培,范宏瑞,丁俊英.流体包裹体研究进展[J].矿物岩石地球化学通报,2014,33(1):1-5.
[10] Moritz R. Fluid salinities obtained by infrared microthemometry of opaque minerals Implications for ore deposit modeling-A note of caution[J]. Journal of Geochemical Exploration, 2006, 89: 284-287.
[11] ZHU Yanan, PENG Jiantang. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China[J]. Ore Geology Reviews, 2015, 65(1): 55-69.
[12] WEI Wenfeng, HU Ruizhong, BI Xianwu, et al. Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan Tungsten deposit, Jiangxi province, China[J]. Mineralium Deposita, 2012, 47(6): 589-605.
[13] NI Pei, WANG Xudong, WANG Guoguang, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic Tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65(4): 1062-1077.
[14] 常海亮,黄惠兰.西华山钨矿床中熔融包裹体的初步研究与矿床成因探讨[J].岩石矿物学杂志,2002,21(2):143-150.
[15] 魏文凤.赣南西华山钨矿床成矿流体及成矿机制研究[D].北京:中国科学院研究生院,2011:1-122.
[16] 刘家齐,汪雄武,曾贻善,等.西华山花岗岩及钨锡铍矿田成矿流体演化[J].华南地质与矿产,2002(3):91-96.
[17] 席斌斌,张德会,周利敏.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报,2008,82(7):956-966.
[18] 徐文刚,张德会,席斌斌,等.流体包裹体爆裂法测温技术可靠性讨论——以江西大吉山钨矿为例[J].现代地质,2008,22(5):757-765.
[19] 王旭东,倪培,蒋少涌,等.赣南漂塘钨矿流体包裹体研究[J].岩石学报,2008,24(9):2163-2170.
[20] 王旭东,倪培,张伯声,等.江西盘古山石英脉型钨矿床流体包裹体研究[J].岩石矿物学杂志,2010,29(5):539-550.
[21] 王旭东,倪培,袁顺达,等.赣南木梓园钨矿流体包裹体特征及其地质意义[J].中国地质,2012,39(6):1790-1797.
[22] 王旭东,倪培,袁顺达,等.江西黄沙石英脉型钨矿床流体包裹体研究[J].岩石学报,2012,28(1):122-132.
[23] 王旭东,倪培,袁顺达,等.赣南漂塘钨矿锡石及共生石英中流体包裹体研究[J].地质学报,2013,87(6):850-859.
[24] 王旭东,倪培,袁顺达,等.江西大吉山钨多金属矿床流体包裹体研究[J].矿床地质,2013,32(2):308-322.
[25] 胡东泉,华仁民,李光来,等.赣南茅坪钨矿流体包裹体研究[J].高校地质学报,2011,17(2):327-336.
[26] 宋生琼.赣南淘锡坑钨矿床流体地球化学和成矿机理研究[D].贵阳:中国科学院地球化学研究所,2011:1-115.
[27] 黄惠兰,李芳,谭靖,等.赣南西华山黑钨矿中熔融包裹体的发现和初步研究[J].华南地质与矿产,2012,28(2):181-183.
[28] 黄惠兰,常海亮,李芳,等.西华山钨矿床晶洞中水晶与黑钨矿流体包裹体显微测温与特征元素测定[J].地学前缘,2013,20(2):205-212.
[29] 吴开兴,张恋,陈陵康,等.赣南新安子钨锡矿床流体包裹体地球化学研究[J].有色金属科学与工程,2013,4(5):70-78.
[30] 赵波.江西漂塘石英脉型黑钨矿床成矿深度估算[D].北京:中国地质大学,2013:1-77.
[31] 李光来,华仁民,王旭东,等.江西南部盘古山钨矿的氢氧同位素研究[J].东华理工大学学报:自然科学版,2014,37(2):164-169.
[32] 刘若兰,慕纪录,徐荣.江西大龙山钨钼矿床流体包裹体的研究[J].成都地质学院学报,1985(2):25-31.
[33] 刘若兰,慕纪录.木梓园钨钼矿床流体包裹体研究及在成矿阶段划分中的应用[J].成都地质学院学报,1990,17(3):18-28.
[34] 郑跃鹏,喻铁阶,吴开华.茅坪钨锡多金属矿床流体包裹体特征及地质意义[J].矿产与地质,1991,5(4):311-317.
[35] 朱焱龄,李崇佑,林运淮.江西南部脉钨矿床主要矿化特征[C]//余鸿彰.钨矿地质讨论会论文集.北京:地质出版社,1981:339-351.
[36] 毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,23(10):2329-2338.
[37] 徐克勤,胡受奚,孙明志,等.华南钨矿床的区域成矿条件分析[C]//余鸿彰.钨矿地质讨论会论文集.北京:地质出版社,1981:243-258.
[38] 柳志青.脉状钨矿床成矿预测理论[M].北京:科学出版社,1980:1-7.
[39] 俞受鋆.南岭地区燕山早期多阶段花岗岩体与钨矿成矿关系研究质出版社[C]//余鸿彰.钨矿地质讨论会论文集.北京:地质出版社,1981:305-313.
[40] 徐克勤,程海.中国钨矿形成的大地构造背景[J].地质找矿论丛,1987(3):1-7.
[41] 华仁民,陈培荣,张文兰,等.华南中、新生代与花岗岩类有关的成矿系统[J].中国科学D辑,2003,33(4):335-343.
[42] 华仁民,陈培荣,张文兰,等.论华南地区中生代3次大规模成矿作用[J].矿床地质,2005,24(2):99-107.
[43] Campbell A R, Panter K S. Comparison of fluid inclusions in coexisting wolframite, cassiterite, and quartz from St.Michael’s mount and cligga head,Cornwall, England[J]. Geochimica Et Cosmochimica Acta, 1990, 54(3): 673-681.
[44] 蔡建明,刘若兰,曾广胜. 江西盘古山钨矿流体包裹体及其与成矿关系的研究[C]//余鸿彰. 钨矿地质讨论会论文集(中文版). 北京:地质出版社,1981:1-11.
[45] Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions:A PVTX summary from 300℃ to 500℃[J]. American Journal of Science, 1991, 291(4): 309-338.
[46] Bodnar R J. A method of calculateing fluid inclusion volumes based on vppor bubble diameters and PVTX properties of inclusion fluids[J]. Economic Geology, 1983, 78(3): 535-542.
[47] Flincor B P. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusiondata[J]. American Mineralogist, 1989, 74(11):1390-1393.
[48] 穆治国,黄福生,陈成业,等. 漂塘—西华山石英脉型钨矿床碳、氢、氧稳定同位素研究[C]//余鸿彰.钨矿地质讨论会论文集(中文版). 北京:地质出版社,1981,153-168.─3c/div>
[49] 庄龙池,林伟圣,谢霆焕.大吉山钨矿的稳定同位素地球化学[J].中国地质科学院宜昌地质矿产研究所所刊,1991(16):109-120.
[50] 吴永乐,梅勇文. 西华山钨矿田多次成岩成矿及其演化规律[C]//余鸿彰.钨矿地质讨论会论文集(中文版). 北京: 地质出版社,1981,207-220.
[51] 冯志文,夏卫华,章锦统,等.江西黄沙脉钨矿床特征及成矿流体性质讨论[J].地球科学:中国地质大学学报,1989,14(4):423-432.
[52] 张理刚,庄龙池,钱雅倩,等.江西西华山-漂塘地区花岗岩及其钨锡矿床的稳定同位素地球化学[C]//钨矿地质讨论会论文集,北京:地质出版社,1981:325-338.
[53] 刘家齐.西华山花岗岩及其成矿作用[J].中国地质科学院院报,1989,19:83-105.
[54] 张理刚.成岩成矿理论与找矿—中国主要类型矿床及花岗岩类岩石的稳定同位素地质学[M].北京:北京工业大学出版社,1989:1-200.
[55] Taylor H P. The application of Oxygen and Hydrogen isotope studies to problems of hydrothermal alteration and ore depositions[J]. Economic Geology, 1974, 69(6): 843-883.
[56] White D E. Diverse origins of hydrothermal ore Fluids[J]. Economic Geology, 1974, 69(6): 954-973.
[57] 丁悌平.氢氧同位素地球化学[M].北京:地质出版社,1980:1-184.
[58] 王登红,陈富文,张永忠,等.南岭有色-贵金属成矿潜力及综合探测技术研究[M].北京:地质出版社,2010:1-472.
[59] 郭春丽,王登红,陈毓川,等.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定[J].矿床地质,2007,26(4):432-442.
[60] Giuliani G. Li Y D, Sheng T F. Fluid inclusion study of xihuashan Tungsten deposit in the southern Jiangxi province,China[J]. Mineralium Deposita, 1988, 23(1): 24-33.
[61] Rios F J, Villas R N, Fuzikawa K. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleoproterozoic Musa granite, eastern Amazon craton, Brazil[J]. Journal of South American Earth Sciences, 2003, 15(7): 787-802.
[62] Beuchat S. Moritz R, Pettke T. Fluid evolution in the W-Cu-Zn-Pb San cristobal vein,Peru:fluid inclusion and stable isotope evidence[J]. Chemical Geology, 2004, 210: 201-224.
[63] Zdeněk Dolní(ˇoverc)ek, Milo René, Walter Prochaska, et al. Fluid evolution of the Hub Stock, Horní Slavkov-Krásno Sn-Wo redistrict,Bohemian Massif, Czech Republic[J]. Miner Deposita, 2012, 47:821-830.
[64] YANG Yongfei, LI Nuo, CHEN Yanjing. Fluid inclusion study of the Nannihu giant porphyry Mo-W deposit, Henan Province, China: Implications for the Nature of porphyry ore-fluid systems formed in a continental collision setting[J]. Ore Geology Reviews, 2012, 46: 83-94.
[65] Mohamed A M. Evolution of mineralizing fluids of cassiterite-wolframite and fluorite deposits from Mueilha Tin mine area, Eastern Desert of Egypt, evidence from fluid inclusion[J]. Arabian Journal of Geosciences, 2013, 6(3): 775-782.[66] Moura A, Dória A, Neiva A.M.R, et al. Metallogenesis at the Carris W-Mo-Sn deposit(Gerês, Portugal):Constraints from fluid inclusions, mineral geochemistry, Re-Os and He-Ar isotopes[J]. Ore Geology Reviews, 2014,56(56):73-93.[67] Higgins N C. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions[J]. Canadian Journal of Earth Science. 2011, 17(7):823-830.─3c/div>
[68] 朱焱龄,李崇佑,林运淮.赣南钨矿地质[M].南昌:江西人民出版社,1981:324-337.
[69] 林新多,张德会,章传玲.湖南宜章瑶岗仙黑钨矿石英脉成矿流体性质的探讨[J].地球科学,1986,11(2):153-160.
[70] 张德会.石英脉型黑钨矿床成矿流体性质的进一步探讨[J].地球科学,1987,12(2):185-192.
[71] 余行祯,李佩兰.西华山钨矿田成矿热流体性质分析[J].矿产与地质,1988(1):81-88.
[72] 干国良.江西黄沙脉钨矿床成矿流体性质的初步探讨[J].宜昌地矿所专刊,1991:83-94.
[73] 常海亮,汪雄武,王晓地,等.西华山黑钨矿-石英脉绿柱石中熔融包裹体的成分[J].岩石矿物学杂志,2007,26(3):259-268.
[74] 张德会.试论石英脉型黑钨矿床的液态分离成因[J].地质与勘探,1988(7):15-20.
[75] Giamello M, Protano G, Riccobono F, et al. The W-Mo deposit of Perda Majori(SE Sardinia, Italy): a fluid inclusion study of ore and gangue minerals[J]. European Journal of Mineralogy, 1992, 4(5): 1079-1084.
[76] Smith M P. Fluid inclusion and stable isotope constraints on theGenesis of the Cligga Head Sn-W deposit, S.W.England[J]. European Journal ofMineralogy, 1996, 8(5): 961-997.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(41302053),博士启动资金(DHBK201120)资助。
第一作者简介:周龙全,1987年生,男,研究生,矿产普查与勘探专业。通讯作者简介:李光来,1983年生,讲师,硕士生导师,主要从事花岗岩与成矿作用研究。
更新日期/Last Update: 2016-06-17