[1]赵宇浩,姚仲友,戚学祥,等.云南维西大宝山铜矿40Ar/39Ar年代学及成矿物质来源[J].华东地质,2018,39(01):50-58.[doi:10.16788/j.hddz.32-1865/P.2018.01.007]
 ZHAO Yu-hao,YAO Zhong-you,QI Xue-xiang,et al.dating of muscovite and source of ore-forming materials in the Dabaoshan Copper ore deposit, Weixi County, Yunnan[J].East China Geology,2018,39(01):50-58.[doi:10.16788/j.hddz.32-1865/P.2018.01.007]
点击复制

云南维西大宝山铜矿40Ar/39Ar年代学及成矿物质来源()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
39
期数:
2018年01期
页码:
50-58
栏目:
矿床地质
出版日期:
2018-03-15

文章信息/Info

Title:
dating of muscovite and source of ore-forming materials in the Dabaoshan Copper ore deposit, Weixi County, Yunnan
文章编号:
2096-1871(2018)01-050-09
作者:
赵宇浩1姚仲友1戚学祥2王天刚1
(1. 中国地质调查局南京地质调查中心,南京 210016; 2. 中国地质科学院地质研究所,北京 100037)
Author(s):
ZHAO Yu-hao1 YAO Zhong-you1 QI Xue-xiang2 WANG Tian-gang1
(1. Nanjing Center, China Geological Survey, Nanjing 210016, China; 2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China)
关键词:
成矿时代 成矿物质 铜矿 大宝山 云南
Keywords:
mineralization age ore-forming material Copper ore deposit Dabaoshan Yunnan
分类号:
P618.41
DOI:
10.16788/j.hddz.32-1865/P.2018.01.007
文献标志码:
A
摘要:
云南大宝山铜矿是雪龙山成矿带规模较大的浅成中低温热液型铜矿床。文章通过对该矿区黄铜矿+石英+方解石+菱铁矿矿脉中白云母进行40Ar/39Ar定年,获得白云母40Ar/39Ar法年龄为26±2.5 Ma,代表大宝山铜矿的年龄; H、O同位素分析结果表明成矿流体是以大气降水为主并含有部分岩浆水的建造水; S同位素分析结果表明,主要金属矿物的δ34S值为-5.4‰~+1.3‰,表明成矿物质主要来源于深部岩浆; C同位素分析结果表明成矿流体主要来源于岩浆—地幔,并受大气降水影响。根据围岩蚀变及围岩中Cu丰度等特征,推断大宝山铜矿成矿物质主要来源于深部岩浆,成矿流体为岩浆水与大气降水的混合物。
Abstract:
The Dabaoshan Copper ore deposit is a large-sized epithermal-mesothermal hydrothermal deposit in the Xuelongshan metallogenic belt, Yunnan Province. In this study, 40Ar/39Ar dating of muscovite from ore-bearing veins containing chalcopyrite-quartz-calcite-siderite was carried out to yield a 40Ar/39Ar age of 26 ± 2.5 Ma, representing the age of the Dabaoshan Copper ore deposit. H and O isotopic analysis results show that the ore-forming fluids were dominated by meteoric water as well as minor amount of magmatic formation water. S isotopic analysis shows that the δ34S values of the main metal minerals range from -5.4‰ to +1.3‰, suggesting that the ore-forming materials mainly derived from deep magma. C, H and O isotopic results also indicate that the ore-forming fluids sourced mainly from mantle magma, which was influenced by meteoric water. According to the alteration and Cu abundance of wall rocks, it can be inferred that the ore-forming material of the Dabaoshan copper ore deposit might derive from deep magma and ore-forming fluids were the mixture of magmatic water and meteoric water.

参考文献/References:

[1] Leloup P H, Kienast J R. High-temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River, People’s Republic of China[J]. Earth and Planetary Science Letters, 1993, 118(1/4): 213-234.
[2] Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone(Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics,1995,251(1/4): 3-10.
[3] 苏之良. 云南省维西县雪龙山变质岩带铜多金属成矿地质条件与成矿预测研究[D]. 长沙: 中南大学,2005: 1-75.
[4] 成连华, 杨松, 向洪流. 云南省维西县大宝山铜(银)矿床地质—矿化特征及其综合找金潜力[J]. 矿产与地质, 2006, 20(2): 152-154.
 [5] 董家龙, 杨松, 曾桂强. 云南维西大宝山铜矿床地质—物探找矿研究与成矿预测[J]. 矿产与地质, 2008, 22(4), 357-363.
[6] 赵宇浩, 戚学祥, 唐贯宗, 等. 云南维西大宝山铜矿PGE和微量元素地球化学特征及其成因意义[J]. 岩石学报, 2013, 29(6): 2171-2183.
[7] Ludwing K R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center,2003:70.
[8] 陈文, 张彦, 金贵善, 等. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据[J]. 岩石学报, 2006, 22(4): 867-872.
[9] 张彦, 陈文, 陈克龙, 等. 成岩混层(I/S)Ar-Ar年龄谱型及39Ar核反冲丢失机理研究——以浙江长兴地区P-T界线粘土岩为例[J]. 地质论评, 2006, 52(4): 556-561.
[10] Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica Et Cosmochimica Acta, 1963, 27(1):43-52.
[11] 周九龙, 罗照华, 贺怀宇, 等. 河北大庙铁矿床黑云母40Ar/39Ar年龄及其地质意义[J]. 地学前缘,2012, 19(4): 110-117.
[12] 郑永飞, 徐宝龙, 周根陶. 矿物稳定同位素地球化学研究[J]. 地学前缘, 2000, 7(2): 299-320.
[13] 周龙全, 李光来, 唐傲, 等. 赣南地区石英脉型钨矿成矿流体特征[J]. 华东地质, 2016, 37(2): 136-146.
[14] 张理刚. 稳定同位素在地质科学中的应用——金属活化热液成矿作用及找矿[M]. 西安:陕西科学技术出版社,1985:54-120.
[15] Taylor H P, Jr H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore depositon[J]. Economic Geology, 1974, 69(6): 843-883.
[16] Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 1972, 67(5): 551-578.
[17] Rye R O, Sawkins F J. Fluid Inclusion and Stable Isotope Studies on the Casapalca Ag-Pb-Zn-Cu Deposit, Central Andes, Peru[J]. Economic Geology, 1974, 69(2): 181-205.
[18] 芮宗瑶, 黄崇轲, 徐钰, 等. 西藏玉龙斑岩铜(钼)矿带含矿斑岩与非含矿斑岩的鉴别标志[C]//地质矿产部青藏高原地质文集编委会.青藏高原地质文集.北京:地质出版社,1983:159-176.
[19] 徐仕海, 顾雪祥, 唐菊兴, 等. 兰坪盆地三类主要铜银多金属矿床的稳定同位素地球化学[J]. 矿物岩石地球化学通报, 2005, 24(4): 309-316.
[20] 徐启东, 莫宣学. 三江中段特提斯阶段区域流体的性质与状态[J]. 岩石学报, 2000, 16(4): 639-648.
[21] 刘家军, 李朝阳, 潘家永, 等. 兰坪—思茅盆地砂页岩中铜矿床同位素地球化学[J]. 矿床地质, 2000, 19(3): 223-234.
[22] 刘家军, 何明勤, 李志明, 等. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质, 2004, 23(1): 1-10.
[23] 叶庆同,胡云中. 三江地区区域地球化学背景和金银铅锌矿成矿作用[M]. 北京:地质出版社, 1992: 1-246.
[24] 黎彤. 化学元素的地球丰度[J]. 地球化学, 1976(3): 167-174.
[25] 杨松, 董家龙, 张振亮, 等. 云南兰坪—维西地区铜矿床成矿地质条件研究[J]. 矿产与地质, 2006, 20(6): 640-644.

备注/Memo

备注/Memo:
*收稿日期:2017-01-06 修订日期:2017-05-04 责任编辑:谭桂丽
基金项目:中国地质调查局 “青藏高原东南缘大型构造带与资源效应(编号:1212011121266)”、“海上丝绸之路大洋洲和南美洲矿产资源潜力评价(编号:DD20160110)”项目联合资助。
第一作者简介:赵宇浩,1989年生,男,助理工程师,主要从事矿床地质研究。
更新日期/Last Update: 2018-03-28