[1]秦蕾胜,刘晓东,王凯兴,等.桂北苗儿山地区香草坪和豆乍山花岗岩体绿泥石特征及其对铀成矿的指示[J].华东地质,2018,39(02):134-141.[doi:10.16788/j.hddz.32-1865/P.2018.02.007]
 QIN Lei-sheng,LIU Xiao-dong,WANG Kai-xing,et al.Characteristics of chlorites in the Xiangcaoping and Douzhashan granitoids in the Miaoershan area, and their implications for uranium mineralization[J].East China Geology,2018,39(02):134-141.[doi:10.16788/j.hddz.32-1865/P.2018.02.007]
点击复制

桂北苗儿山地区香草坪和豆乍山花岗岩体绿泥石特征及其对铀成矿的指示()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
39
期数:
2018年02期
页码:
134-141
栏目:
矿床地质
出版日期:
2018-06-15

文章信息/Info

Title:
Characteristics of chlorites in the Xiangcaoping and Douzhashan granitoids in the Miaoershan area, and their implications for uranium mineralization
文章编号:
2096-1871(2018)02-134-08
作者:
秦蕾胜12刘晓东13王凯兴12张志强12
(1. 东华理工大学核资源与环境国家重点实验室培育基地,南昌 330013; 2. 东华理工大学地球科学学院,南昌 330013; 3. 九江学院,九江 332005)
Author(s):
QIN Lei-sheng12 LIU Xiao-dong13 WANG Kai-xing12ZHANG Zhi-qiang12
(1. State Key Laboratory of Nuclear Resources and Environment,East China Institute of Technology, Nanchang 330013,China; 2. School of Earth Sciences,East China Institute of Technology, Nanchang 330013,China; 3. Jiujiang University,Jiujiang 332005,China)
关键词:
绿泥石 蚀变特征 形成环境 铀成矿 苗儿山地区 桂北
Keywords:
chlorite alteration characteristics formation environment uranium mineralization miaoershan area Northern Guangxi Province
分类号:
P588.12+1
DOI:
10.16788/j.hddz.32-1865/P.2018.02.007
文献标志码:
A
摘要:
对桂北苗儿山地区不产铀的香草坪岩体和产铀的豆乍山岩体中的绿泥石进行矿物学和地球化学研究,分析2个岩体中绿泥石的种类及形成环境,探讨制约铀成矿的因素。矿物学特征显示:香草坪岩体和豆乍山岩体中的绿泥石主要由黑云母蚀变而来,豆乍山花岗岩比香草坪花岗岩蚀变强烈。地球化学特征表明:相对于香草坪岩体,豆乍山岩体更富集Al3+和Fe2+等离子。香草坪岩体绿泥石为铁绿泥石和铁镁绿泥石,豆乍山岩体绿泥石为鳞绿泥石和铁绿泥石。相对于香草坪花岗岩,豆乍山花岗岩绿泥石蚀变较强、绿泥石Fe2+含量较高,说明豆乍山岩体比香草坪岩体具有更强的还原能力,从而更利于铀成矿,这可能是豆乍山岩体产铀矿而香草坪岩体不产铀矿的主要原因。
Abstract:
Mineralogical and geochemical study of chlorites from the Xiangcaoping and Douzhashan granites in the Miaoershan area was carried out to analyze types and formation environments of chlorites and factors restricting uranium mineralization. Mineralogical characteristics reveal that the chlorites in granites of Xiangcaoping and Douzhashan were altered mainly from biotite. But alteration degree of the Douzhashan granite is stronger than that of Xiangcaoping granite. Geochemical characteristics indicate that the Douzhashan granite contains more ions(such as Al3+ and Fe2+)compared with the Xiangcaoping granite. Chlorites of the Xiangcaoping granite consist of ripidolite and brunsvigite, while chlorites of the Douzhashan granite of thuringite and ripidolite. Compared with the Xiangcaoping granite, the Douzhashan granite underwent strong chloritization with a high content of Fe2+. This illustrates that the Douzhashan granite was characteristic of higher reducing capacity than the Xiangcaoping granite, causing reduction of U6+ in the fluid into U4+, which much benefits for uranium mineralizing. This may be the reason why the Douzhashan granite can host uranium deposits wh2·1ile the Xiangcaoping granite can not.

参考文献/References:

[1] 李妩巍.苗儿山铀矿田控矿断裂构造特征[J].世界核地质科学,2016,33(2):78-83.
[2] 程顺波,付建明,马丽艳,等.桂东北越城岭—苗儿山地区印支期成矿作用:油麻岭和界牌矿区成矿花岗岩锆石U-Pb年龄和Hf同位素制约[J].中国地质,2013,40(4):1189-1201.
[3] 柏道远,钟响,贾朋远,等.南岭西段加里东期苗儿山岩体锆石SHRIMP U-Pb年龄、地球化学特征及其构造意义[J].岩石矿物学杂志,2014,33(3):407-423.
[4] 柏道远,钟响,贾朋远,等.湘西南苗儿山地区早燕山期花岗岩地球化学特征及形成环境[J].华东地质,2015,36(4):235-243.
[5] 王春龙,刘莎,伍静,等.桂东北苗儿山—越城岭南西部岩体内外接触带次生晕元素分布特征及其意义[J]. 地球化学,2013,42(5):405-413.
[6] 伍静,梁华英,黄文婷,等.桂东北苗儿山—越城岭南西部岩体和矿床同位素年龄及华南印支期成矿分析[J].科学通报,2012,57(13):1126-1136.
[7] 张迪,张文兰,王汝成,等.桂北苗儿山地区高岭印支期花岗岩及石英脉型钨成矿作用[J].地质论评,2015,61(4):817-834.
[8] 张迪.桂北苗儿山地区印支期花岗岩与成矿作用研究[D].南京:南京大学,2015:15-25.
[9] 杨振.桂北苗儿山—越城岭地区前燕山期岩浆活动及其成矿作用的研究[D].南京:南京大学,2012:8-21.
[10] 张迪,张文兰,王汝成.加里东—印支期钨锡成矿作用最新进展——来自苗儿山—越城岭成矿花岗岩最新年龄证据[J].矿物学报,2013,33(S2):277-278.
[11] 胡欢,王汝成,陈卫锋,等.桂东北豆乍山产铀花岗岩热液活动时限的确定与铀成矿意义[J].科学通报,2013,58(36):3849-3858.
[12] 胡欢,王汝成,陈卫锋,等.桂东北苗儿山花岗岩黑云母矿物学特征对比及铀成矿意义[J].矿物学报,2014,34(3):321-327.
[13] 谢晓华.桂东北苗儿山中段豆乍山花岗岩年代学、地球化学特征及其铀矿化机制研究[D].南京:南京大学,2008:7-20.
[14] 谢晓华,陈卫锋,赵葵东,等.桂东豆乍山花岗岩年代学与地球化学特征[J].岩石学报,2008,24(6): 1302-1312.
[15] 徐伟昌,张洪运.苗儿山花岗岩复式岩基锶、氧、钕、铅同位素研究[J].广西地质,1993,6(1):15-22.
[16] 徐伟昌,张洪运.苗儿山花岗岩复式岩基年代学研究的进展及时代划分案[J].岩石学报,1994,10(3): 330-337.
[17] 王志成.南岭湘桂段中生代壳源岩浆作用和铀成矿作用[D].南京:南京大学,2003:12-18.
[18] Xie X G, Byerly G R, Ray E. Ferrell Jr.Ⅱb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry [J]. Contributions to Mineralogy & Petrology, 1997,126(3):275-291.
[19] 张展适.下庄铀矿田岩浆作用及其与铀成矿关系研究[D].南京:南京大学,2005:63-72.
[20] 何建国,戎嘉树,毛玉仙,等.201、325和706铀矿床蚀变带绿泥石研究[J].世界核地质科学,2008, 25(3):125-133.
[21] Zhang Zhanshi, Liu Shuai, Wu Jianhua. Characteristic and the formation conditions of chlorite in Xiazhuang uranium ore-field, South China[J]. Geochemica Et Cosmochmica Acta,2008,72(12):1092.
[22] 丁万烈.俄罗斯马林诺夫铀矿床成因探讨[J].世界核地质科学,2005,22(2):82-86.
[23] 王青山.龙首山钠交代岩型铀矿地球化学特征及其控矿因素[J].甘肃地质,2008,27(1):23-29.
[24] 邵飞,许健俊,邵上,等.华南花岗岩型铀矿地质特征及成矿作用[J].华东地质,2014,35(3):211-217.
[25] Marignac C, Cuney M. Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt[J]. Mineralium Deposita,1999,34(5/6):472-504.
[26] Duthou J L, Cantagrel J M, Vialette Y. Paleozoic granitoids from the French Massif Central: age and origin studied by the 87Rb/87Sr system[J]. Physics of the Earth & Planetary Interiors,1984,35(1):131-144.
[27] Cathelineau M, Boiron M C, Holliger P, et al. Metallogenesis of the French part of the Variscan orogen. Part: time space relationships between U, Au, Sn-W ore deposition and geodynamic events: mineralogical and U-Pb data[J]. Tectonophysics,1990,177(1): 59-79.
[28] 赵金科,张文佑.广西地质[M].北京:科学出版社,1958:1-77.
[29] 徐克勤,孙鼐,王德滋,等.华南多旋回的花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨[J].地质学报,1963,43(1):1-26.
[30] 北京第三研究所四室,广西第十地质队.第二届全国同位素地质会议论文集(第二集)[C].北京:地质出版社,1974:127-145.
[31] 丁海红.桂东北苗儿山复式岩体产铀与非产铀花岗岩矿物学对比研究[D].南京:南京大学,2010:8-10,35-43.
[32] 倪琦生,刘继顺.某辉沸石化—铀酰矿化铀矿床的成因研究[J].铀矿地质,1988,4(5):266-273.
[33] 郑巧荣.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1983(1):55-62.
[34] Deer W A, Howie R A, Zussman J. Rock-Forming Minerals.Vol.3:Sheet Silicates [M]. London: Longmans,1967:270.
[35] 王濮.系统矿物学[M].北京:地质出版社,1984:449-457.
[36] 章卫星,冯为华,张宝松.江西邹家山铀矿绿泥石形成温度及其成矿关系[J].资源调查与环境,2007, 28(4):293-297.
[37] Rausell-Colom J A, Wiewiora A, Matesanz E. Relationship between composition and d001 for chlorite[J]. American Mineralogist,1991,76(7/8):1373-1379.
[38] Nieto F. Chemical composition of metapelitic chlorites: X-ray diffraction and optical property approach [J]. European Journal of Mineralogy,1997,9(4):829-841.
[39] Battaglia S. Applying X-ray diffraction geothermometer to a chlorite [J]. Clays & Clay Minerals, 1999,47(1):54-63.
[40] 薛志远.湖南郴州芙蓉锡矿田绿泥石成分温度计应用及其成矿温度研究[D].北京:中国地质大学(北京),2009: 26-34.
[41] Laird J. Chlorites: metamorphic petrology [J]. Reviews in Mineralogy & Geochemistry,1988,19(1): 405-453.

备注/Memo

备注/Memo:
*收稿日期:2017-07-29 修订日期:2017-12-01 责任编辑:谭桂丽
基金项目:中国核工业地质局“十三五”高校科研攻关项目和国家自然科学青年基金项目(编号:41602071)项目联合资助。
第一作者简介:秦蕾胜,1991年生,男,硕士研究生,主要从事火成岩与铀成矿作用研究。
通讯作者简介:刘晓东,1963年生,男,教授,博士,主要从事铀成矿作用与高放废物处置研究。
更新日期/Last Update: 2018-06-29