[1]周 延,修连存,杨 凯,等.红外光谱矿物填图技术及其应用[J].华东地质,2019,40(04):289-198.[doi:10.16788/j.hddz.32-1865/P.2019.04.006]
 ZHOU Yan,XIU Lian-cun,YANG Kai,et al.Infrared spectrum mineral mapping technique and its application[J].East China Geology,2019,40(04):289-198.[doi:10.16788/j.hddz.32-1865/P.2019.04.006]
点击复制

红外光谱矿物填图技术及其应用()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
40
期数:
2019年04期
页码:
289-198
栏目:
矿床地质
出版日期:
2019-12-01

文章信息/Info

Title:
Infrared spectrum mineral mapping technique and its application
文章编号:
2096-1871(2019)04-289-10
作者:
周 延1修连存1杨 凯2张红亮2陈世忠1范飞鹏1郑志忠1
(1.中国地质调查局南京地质调查中心,南京 210016; 2.中科遥感科技集团有限公司,天津 300384)
Author(s):
ZHOU Yan1XIU Lian-cun1YANG Kai2ZHANG Hong-liang2CHEN Shi-zhong1FAN Fei-peng1ZHENG Zhi-zhong1
(1.Nanjing Center,China Geological Survey,Nanjing 210016,China; 2.China RS Geoinformatics Co.,Ltd,Tianjin 300384,China)
关键词:
红外光谱 仪器研发 矿物填图技术 成果应用
Keywords:
infrared spectrum research and development of the instrument mineral mapping techniques: application
分类号:
P575.4
DOI:
10.16788/j.hddz.32-1865/P.2019.04.006
文献标志码:
A
摘要:
红外光谱可有效识别与成矿有关的中低温指示矿物,在野外利用红外光谱仪器开展矿物填图是目前国内外找矿勘查工作中广泛应用的一项高新技术,具有采样密度高、数据量大、效率高、成本低等优势。文章重点介绍了国内外红外光谱仪器研发历史及现状,以及近年来运用国产CMS350A型全自动数字化岩芯扫描仪开展的矿物填图范例,较全面地展示矿物填图技术及其应用效果。红外光谱矿物填图技术基于海量数据客观勾绘矿化蚀变特征,精准识别具有重要找矿意义的蚀变矿物,获取矿物离子交换信息并反演热液流体性质,为区域找矿潜力评价及下一步找矿部署提供指导。红外光谱矿物填图技术的发展方向为工作波段向热红外扩展、设备小型化、提高光谱分辨率及拓展应用领域。
Abstract:
As an effective indicator for low-middle temperature minerals related to mineralization, infrared spectrum has been extensively employed in-site mineral mapping. This high technology is characterized by high sampling density, large data volume, high efficiency and low cost. With an emphasis on introduction to the latest development and status of infrared spectroscopy instrument and application of Domestic CMS350A digital core scanner, this study presents application of the technique and its results. On the basis of mineralization and alteration features outlined by mass data, the study precisely indentified altered minerals which are significant to prospecting, obtained ion exchange data of minerals and deduced the properties of hydrothemal fluid, providing guidance for potential evaluation of regional prospecting and further deployment for mineral exploration. Thus, the study direction of infrared spectrum mineral mapping technology should focus on the outreach of working band toward thermal infrared, miniaturization of equipment, improvement of spectral resolution and expansion of applicable fields, etc.

参考文献/References:

[1] HAUFF P, COCKS T. Short wave infra-red spectroscopy techniques applied to exploration: Emphasis on alteration mineralogy[J]. Contributions of the Economic Geology Research Unit,1992,44:72-74.

[2] HERRMANN W, BLAKE M, DOYLE M, et al. Short wavelength infrared(SWIR)spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queens-land[J]. Economic Geology, 2001,96(5): 939-955.
[3] CHANG Z S, HEDENQUIST J W, WHITE N C, et al. Exploration tools for linked porphyry and epithermal deposits: example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Economic Geology,2011, 106(1368):1365-1398.
[4] JONES S, HERRMANN W, GEMMELL J B. Short wavelength infrared spectral characteristics of the HW Horizon: Implications for exploration in the Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada[J]. Economic Geology,2005,100(2): 273-294.
[5] YANG K, HUNTINGTON J F, SCOTT K M, et al. Compositional variations of white mica in the footwall hydrothermal alteration system of the Hellyer Zn-Pb deposit, Tasmania[M]. Publication Series-Australasian Institute of Mining and Metallurgy,2004: 283-288.
[6] YANG K, LIAN C, HUNTINGTON J F, et al. Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu-Au deposit, Xinjiang, China[J]. Mineralium Deposita, 2005,40(3): 324-336.
[7] YANG K, HUNTINGTON J F, GEMMELL J B, et al. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy[J]. Journal of Geochemical Exploration, 2011,108(2): 143-156.
[8] THOMPSON A J B, HAUFF P L, ROBITAILLE A J. Alteration mapping in exploration: Application of short-wave infrared(SWIR)spectroscopy[J].Society of Economic Geologists Newsletter,1999, 39: 16-27.
[9] RAJU P V S, KATHAI P, CRAIG H. Integrated SWIR spectral and XRD studies on core samples from Gadarwara, Central India craton, Madhya Pradesh, India-footprints for IOCG mineralisation[J]. Mineral Resources to Discover-biennial SGA Meeting,2017,3:1-14.
[10] 修连存,郑志忠,俞正奎,等.便携式近红外矿物分析仪研究报告[R].南京:中国地质调查局南京地质调查中心,2005:1-2.
[11] 修连存,郑志忠,俞正奎,等. 便携式近红外矿物分析仪的研制[A]∥当代中国近红外分析技术[C].2007: 193-202.
[12] 修连存,郑志忠,俞正奎,等.近红外光谱分析技术在蚀变矿物鉴定中的应用[J].地质学报,2007,81(11):1584-1590.
[13] 修连存,郑志忠,陈春霞,等.国产便携式近红外药品分析仪原理及其应用[J].现代科学仪器,2008(4):120-123.
[14] 修连存,郑志忠,俞正奎,等.近红外光谱仪测定岩石中蚀变矿物方法研究[J].岩矿测试,2009,28(6):519-523.
[15] 修连存,郑志忠,殷靓,等.岩心扫描仪光谱数据质量评估方法研究[J].光谱学与光谱分析,2015,35(8):2352-2356.
[16] 张蓬,武振凯.PIMA在斑岩型矿床蚀变带划分中的应用综述[J].吉林地质,2011,30(1):129-132.
[17] 王艳丽,许虹,韩剑.PIMA在地质中的应用研究[J].地质找矿论丛,2009,24(1):77-82.
[18] 连长云,章革,元春华,等.短波红外光谱矿物测量技术在热液蚀变矿物填图中的应用——以土屋斑岩铜矿床为例[J].中国地质,2005,32(3):483-495.
[19] 连长云,章革,元春华.短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变矿物填图中的应用[J]. 矿床地质,2005,24(6):621-637.
[20] 徐庆生,郭健,刘阳,等.近红外光谱矿物分析技术在帕南铜-钼-钨矿区蚀变矿物填图中的应用[J].地质与勘探,2011,47(1):107-112.
[21] 唐楠,唐菊兴,郭娜,等.短波红外光谱仪在矿床蚀变分带研究中的应用——以西藏铁格隆南斑岩-浅成低温热液矿床为例[J].矿物学报,2015,35(Z):925-926.
[22] 卢燕,周延,张红亮,等.福建政和东际金-银矿床的热液蚀变特征及其勘探指示意义[J].地质与勘探,2017,53(6):1039-1050.
[23] 周延,陈世忠,张红亮,等.红外光谱蚀变矿物填图技术在找矿勘查中的应用——以福建政和狮子岗铜矿为例[J].矿物学报,2017,37(Z):769-770.
[24] 祁进平,李晶,戴茂昌,等.紫金山矿田深部勘查新技术、新方法研究进展[J].矿床地质,2012,31(Z):873-874.
[25] POST J L, NOBLE P N. The near infrared combination band frequencies of dioctahedral smectites, micas, and illites[J].Clays and Clay Minerals,1993, 41(6): 639-644.
[26] YANG K, HUNTINGTON J F, BOARDMAN J W.Mapping hydrothermal alteration in the Comstock mining district, Nevada, using simulated satellite-borne hyperspectral data[J].Australian Journal of Earth Sciences,1999, 46(6): 915-922.
[27] 李晶,祁进平,修连存,等.岩芯光谱扫描仪在紫金山矿产勘查中的应用[J]. 矿物学报,2013(Z): 1020-1021.
[28] 甘甫平,王润生,马蔼乃. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘,2003,10(2):445-454.
[29] LAUKAMP C, CACCETTA M, CHIA J, et al. The uses, abuses and opportunities for hyperspectral technologies and derived geoscience information[J]. AIG Bulletin, 2010, 51(3):73-76.
[30] YANG K, WHITBOURN L, MASON P,et al. Mapping the chemical composition of nickel laterites with reflectance spectroscopy at Koniambo, New Caledo-nia[J]. Economic Geology,2013,108(6): 1285-1299.
[31] 刘德长,邱骏挺,闫柏琨,等.高光谱热红外遥感技术在地质找矿中的应用[J]. 地质论评,2018,64(5):1190-1200.
[32] 李天顺,李莉萍.红外光谱定量测定硅灰石矿中矿物含量[J]. 岩矿测试,1992,11(3):232-235.
[33] 赵春芳,褚丙武.近红外光谱法测定铝土矿主要成分含量的探讨[J]. 中国无机分析化学,2013,3(Z):26-28.
[34] 李民赞,郑立华,安晓飞,等.土壤成分与特性参数光谱快速检测方法及传感技术[J]. 农业机械学报,2013,44(3):73-87.
[35] 边伟英.海南炼化汽油在线调合系统的应用分析[J]. 当代石油石化,2010(9):19-22.
[36] 褚小立,田松柏,许育鹏,等.近红外光谱用于原油快速评价的研究[J]. 石油炼制与化工,2012,43(1):72-77.

备注/Memo

备注/Memo:
*收稿日期:2018-09-04 修订日期:2019-02-20 责任编辑:谭桂丽
基金项目:中国地质调查局“武夷山成矿带龙泉-上杭地区地质矿产调查(编号: DD20160037)”和国家重大科学仪器设备开发专项“岩芯光谱扫描仪研发与产业化(编号: 2012YQ050250)”项目联合资助。
第一作者简介:周延,1984年生,男,高级工程师,主要从事矿产勘查及光谱对地探测技术应用研究。
更新日期/Last Update: 2019-11-25