[1]叶永红,龚建师,许乃政,等.涡河流域河南段浅层高碘地下水分布及成因[J].华东地质,2023,44(03):292-299.[doi:10.16788/j.hddz.32-1865/P.2023.03.005]
 YE Yonghong,GONG Jianshi,XU Naizheng,et al.Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin[J].East China Geology,2023,44(03):292-299.[doi:10.16788/j.hddz.32-1865/P.2023.03.005]
点击复制

涡河流域河南段浅层高碘地下水分布及成因()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年03期
页码:
292-299
栏目:
长江经济带资源与环境专辑
出版日期:
2023-09-28

文章信息/Info

Title:
Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin
作者:
叶永红12 龚建师12 许乃政12 张飞12 王赫生12 李亮12 周锴锷12 朱春芳12 陶小虎12 檀梦皎12
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 自然资源部流域生态地质过程重点实验室, 江苏 南京 210016
Author(s):
YE Yonghong12 GONG Jianshi12 XU Naizheng12 ZHANG Fei12 WANG Hesheng12 LI Liang12 ZHOU Kaie12 ZHU Chunfang12 TAO Xiaohu12 TAN Mengjiao12
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, Jiangsu, China
关键词:
涡河流域河南段高碘地下水浅层地下水地下水流场
Keywords:
Guohe BasinHenan sectionhigh iodine groundwatershallow groundwatergroundwater flow field
分类号:
P641.11
DOI:
10.16788/j.hddz.32-1865/P.2023.03.005
摘要:
通过分析涡河流域河南段249组浅层地下水样,发现浅层高碘地下水分布面积为5 818.9 km2,占总面积的51.97%,主要分布于研究区北部、东北部,其次分布于太康县的东部地区。第四纪松散沉积物中的碘是浅层地下水中碘的主要来源。气候条件使得浅层地下水中的碘倾向于聚集,地形地貌控制下的地下水流场以及抽取地下水灌溉庄稼的过程,均使浅层地下水中的碘逐渐浓缩而形成浅层高碘地下水。
Abstract:
By analyzing 249 groups of shallow groundwater samples in Henan section of Guohe Basin, it is found that the area of high iodine shallow groundwater covers 5 818.9 km2, accounting for 51.97% of the total. It is widely distributed in the north and northeast of the study area, followed by the east of Taikang County. Iodine in the shallow groundwater of the study area is mainly sourced from the Quaternary loose sediments. The combination of climate condition, the groundwater flow field constrained by topography and the groundwater pumping for crops irrigation is the prerequisite for the gradual concentration of iodine in the shallow groundwater.

参考文献/References:

[1] 孙一博.渭河流域地下水中氟和碘的形成机理及其对人体健康的影响[D].西安:长安大学,2014. SUN Y B. Formation mechanism and human health influence of fluorine and iodine of groundwater in Wei River Basin[D]. Xian:Changan University,2014.
[2] 徐清,刘晓端,汤奇峰,等.山西晋中地区地下水高碘的地球化学特征研究[J].中国地质,2010,37(3):809-815. XU Q, LIU X D, TANG Q F, et al. High iodic geochemical characteristics of the groundwater in central Shanxi Province[J]. Geology in China,2010,37(3):809-815.
[3] 徐芬,马腾,石柳,等.内蒙古河套平原高碘地下水的水文地球化学特征[J].水文地质工程地质,2012,39(5):8-15. XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology and Engineering Geology,2012,39(5):8-15.
[4] 陆徐荣,杨磊,陆华,等.江苏平原地区(淮河流域)潜水碘含量控制因素探讨[J].地球学报,2014,35(2):211-216. LU X R, YANG L, LU H, et al. A tentative discussion on the control factors of iodine content in phreatic water in Huaihe River Plains of Jiangsu Province[J]. Acta Geoscientica Sinica,2014,35(2):211-216.
[5] 中华人民共和国国家卫生和计划生育委员会. GB/T 19380-2016水源性高碘地区和高碘病区的划定[S].2016. National Health Commission of the People’s Republic of China. GB/T 19380-2016 Definition and demarcation of water-borne iodine-excess areas and iodine-excess endemial areas[S].2016.
[6] 中华人民共和国国家卫生健康委员会. WS/T 669-2020碘缺乏地区和适碘地区的划定[S].2020. National Health Commission of the People’s Republic of China. WS/T 669-2020 Definition and demarcation of iodine deficient areas and iodine adequate areas[S].2020.
[7] 中华人民共和国国家卫生健康委员会.全国生活饮用水水碘含量调查报告[EB/OL].(2019-05-17). http://www.nhc.gov.cn.jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml. National Health Commission of the People’s Republic of China. Investigation report on iodine content of drinking water in China[EB/OL].(2019-05-17). http://www.nhc.gov.cn.jkj/s5874/201905/bb1da1f5e47040e8820b9378e6db4bd3.shtml.
[8] 张云霞,李玲,付巧玲,等.开封市土壤地球化学元素分布特征研究[J].土壤通报,2014,45(2):272-280. ZHANG Y X, LI L, FU Q L, et al. Geochemical distribution characteristics of soil elements in Kaifeng City[J]. Chinese Journal of Soil Science,2014,45(2):272-280.
[9] 张妍,李玉嵩,盛奇,等.河南省商丘地区土壤地球化学特征[J].现代地质,2019,33(2):305-314. ZHANG Y, LI Y S, SHENG Q, et al. Soil geochemical characteristics of Shangqiu area in Henan Province[J]. Geoscience,2019,33(2):305-314.
[10] 李云峰,张庆,周小平,等.安庆大别山区矿泉水化学特征及成因模式[J].华东地质,2021,42(2):193-201. LI Y F, ZHANG Q, ZHOU X P, et al. Chemical characteristics and genetic model of mineral water in Dabie Mountain area of Anqing City[J]. East China Geology,2021,42(2):193-201.
[11] 郄海满,文帮勇,王继强,等.江西赣州梓山地区富硒土壤重金属元素安全性评价[J].华东地质,2017,38(3):234-240. QIE H M, WEN B Y, WANG J Q, et al. Safety evaluation of heavy metal contents in selenium-rich soil in the Zishan area, Ganzhou, Jiangxi Province[J]. East China Geology,2017,38(3):234-240.
[12] SHEPPARD M I, THIBAULT D H, SMITH P A. Iodine dispersion and effects on groundwater chemistry following a release to a peat bog, Manitoba, Can-ada[J]. Geochemistry, 1989,4:423-432.
[13] 董陆阳.河套平原区碘和砷地球化学特征及地方病控制因素[D].北京:中国地质大学(北京),2019. DONG L Y. Geochemical characteristics of iodine and arsenic and controlling factors of endemic diseases in Hetao Plain[D]. Beijing:China University of Geosciences (Beijing),2019.
[14] 韩颖,张宏民,张永峰,等.大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J].中国地质调查,2017,4(1):57-68. HAN Y, ZHANG H M, ZHANG Y F, et al. Distribution regularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong Basin[J]. Geological Survey of China,2017,4(1):57-68.
[15] 吴飞,王曾祺,童秀娟,等.我国典型地区浅层高碘地下水分布特征及其赋存环境[J].水资源与水工程学报,2017,28(2):99-104. WU F, WANG Z Q, TONG X J, et al. The distribution characteristics and storage environments of rich iodine in shallow groundwater of typical areas in China[J]. Journal of Water Resources and Water Engineering,2017,28(2):99-104.
[16] 张艳玲.河南省商丘51年来气候变化特征分析[J].河南科学,2013,31(8):1262-1266. ZHANG Y L. Climate variation characteristics in recent 51 years in Shangqiu, Henan Province[J]. Henan Science,2013,31(8):1262-1266.
[17] YE N J, GONG J S, GE W Y, et al. Environmental isotopic study for groundwater of the North Plain of Huai He River, China[C]//International Atomic Energy Agency. Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007). Vienna:International Atomic Energy Agency, 2007:177-186.
[18] 张二勇,张福存,钱永,等.中国典型地区高碘地下水分布特征及启示[J].中国地质,2010,37(3):797-802. ZHANG E Y, ZHANG F C, QIAN Y, et al. The distribution of high iodine groundwater in typical areas of China and its inspiration[J]. Geology in China,2010,37(3):797-802.
[19] YANG X Q, ZHENG Q, HE M, et al. Bromine and iodine species in drinking water supply system along the Changjiang River in China:Occurrence and transformation[J]. Water Research, 2021,202:1-9.
[20] 张媛静,张玉玺,向小平,等.沧州地区地下水碘分布特征及其成因浅析[J].地学前缘,2014,21(4):59-65. ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou Region[J]. Earth Science Frontiers,2014,21(4):59-65.
[21] LI J X, WANG Y X, XIE X J, et al. Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater[J]. Journal of Hydrology, 2016,543:293-304.
[22] 宋秀辉.土壤-作物系统中碘的迁移转化研究[D].杭州:浙江大学,2006. SONG X H. Study on transfer and transform of iodine in soil-crop system[D]. Hangzhou:Zhejiang University,2006.

备注/Memo

备注/Memo:
收稿日期:2021-11-17;改回日期:2022-4-9。
基金项目:中国地质调查局"沙颍河—涡河流域水文地质调查(编号:DD20190354)"和"长江下游及淮河流域水文地质与水资源调查监测(编号:DD20221756)"项目联合资助。
作者简介:叶永红,1985年生,男,高级工程师,硕士,主要从事水文地质、水化学研究工作。Email:njyunwuli@foxmail.com。
更新日期/Last Update: 1900-01-01