[1]黄德华.基于InSAR技术的大同市云冈矿区地面沉降监测[J].华东地质,2023,44(04):476-484.[doi:10.16788/j.hddz.32-1865/P.2023.04.011]
 HUANG Dehua.Land subsidence monitoring in Yungang mining area in Datong City based on InSAR technology[J].East China Geology,2023,44(04):476-484.[doi:10.16788/j.hddz.32-1865/P.2023.04.011]
点击复制

基于InSAR技术的大同市云冈矿区地面沉降监测()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年04期
页码:
476-484
栏目:
其他
出版日期:
2023-12-27

文章信息/Info

Title:
Land subsidence monitoring in Yungang mining area in Datong City based on InSAR technology
作者:
黄德华
福建省地质测绘院, 福建福州 350011
Author(s):
HUANG Dehua
Fujian Geologic Surveying and Mapping Institute, Fuzhou 350011, Fujian, China
关键词:
D-InSARSBAS-InSAR时间序列PS-InSAR矿区沉降监测大同市云冈矿区
Keywords:
D-InSARSBAS-InSARtime seriesPS-InSARmining subsidence monitoringYungang mining area in Datong City
分类号:
P66P694
DOI:
10.16788/j.hddz.32-1865/P.2023.04.011
摘要:
大同市煤炭资源丰富,但煤矿开采活动造成的地面沉降等地质环境问题一定程度上制约着矿区发展。为监测大同市云冈矿区的地面沉降特征,基于哨兵-1A卫星数据,文章使用星载合成孔径雷达差分干涉测量技术(Differential Interferometric Synthetic Aperture Radar,D-InSAR)技术处理2020年6—7月的2景影像,初步获取矿区沉降区域特征,监测区最大沉降量达4.6 cm/36 d;采用小基线集差分干涉技术(Small Baseline Subset InSAR,SBAS-InSAR)处理2019年1月—2020年12月的24景影像,得到监测区部分沉陷区域的长时间序列形变量,该形变量与2020年1月—2020年9月的同地区25景影像数据永久散射体合成孔径雷达干涉测量(Persistent Scattered Interferometric Synthetic Aperture Radar,PS-InSAR)监测形变空间分布一致,形变趋势吻合。综合以上3种InSAR监测结果表明,监测区内存在多达12个明显快速沉降区,均分布于矿区内,其中最大沉降速率达180 mm/y,2019—2020年最大累积沉降量为333 mm,东南部城市区域没有明显形变迹象。研究结果为矿区沉降监测及合理开采提供科学依据。
Abstract:
Datong is rich in coal resources, but the development of mining area is restricted to a certain extent by geological environment problems such as land subsidence caused by coal mining activities. In order to monitor the land subsidence characteristics of Yungang mining area in Datong City, based on Sentinel-1A satellite data, this paper used Differential Interferometric Synthetic Aperture Radar(D-InSAR) technology to process the landscape images captured from June to July, 2020, and preliminarily obtained the characteristics of the subsidence area in the mining area, and the maximum subsidence amount in the monitoring area reached 4.6 cm/36 d. A Small Baseline Subset InSAR (SBAS-InSAR) is used to process 24 images photographed from January 2019 to December 2020, obtaining a long time series deformation of some subsidence areas in the monitoring area. The spatial distribution of this monitoring deformation is consistent with that of the deformation monitored by Persistent Scattered Interferometric Synthetic Aperture Radar(PS-InSAR) using 25 SAR images during the period from January 2020 to September 2020, both of which have coincident deformation trend. According to the above three InSAR monitoring results, there are as many as 12 obviously rapid subsidence zones evenly distributed in the mining area, among which the maximum subsidence rate is 180 mm/y, and the maximum cumulative subsidence in 2019—2020 is 333 mm, while there is no obvious deformation sign in the southeastern urban area. It provides scientific basis for monitoring and rational exploitation of ground subsidence in mining area.

参考文献/References:

[1] 杨逾, 刘文生, 缪协兴,等. 我国采煤沉陷及其控制研究现状与展望[J]. 中国矿业, 2007,16(7): 43-46. YANG Y, LIU W S, MIAO X X, et al. The research status and view of the mining subsidence and it’s control technology in China[J]. China Mining Magazine,2007,16(7): 43-46.
[2] 段丽丽, 朱明. 矿区地面沉降的危害及其防治[J]. 河北理工大学学报, 2007,29(1): 122-124. DUAN L L, ZHU M. Harm of the ground sedimentation in mining areas and prevention and cure[J]. Journal of Hebei Institute of Technology, 2007,29(1):122-124.
[3] 李万林, 周英帅. 基于D-InSAR技术的地质灾害和监测预警[J]. 测绘工程, 2021, 30(1): 66-70. LI W L, ZHOU Y S. Early warning and monitoring of geohazards based on D-InSAR technology[J]. Engineering of Surveying and Mapping, 2021, 30(1): 66-70.
[4] 王明珠,万军伟,白通,等. 德州市德城区砂岩热储地热资源开采对地面沉降的影响[J]. 华东地质, 2021, 42(2): 202-209. WANG M Z, WAN J W, BAI T, et al. The influence of geothermal resources exploitation of sandstone thermal reservoir on land subsidence in Decheng District, Dezhou City[J]. East China Geology, 2021, 42(2): 202-209.
[5] 麻学飞,张双成,惠文华,等.山西省临汾市矿区地表形变InSAR大范围探测与监测[J].自然资源遥感, 2022, 34(3): 146-153. MA X F, ZHANG S C, HUI W H, et al. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3):146-153.
[6] CARNEC C, DELACOURT C. Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France[J]. Joumal of Applied Geophysics, 2000, 43(1): 43-54.
[7] 吴立新,高均海,葛大庆,等. 工矿区地表沉陷D-InSAR监测试验研究[J]. 东北大学学报(自然科学版), 2005,26(8): 778-782. WU L X, GAO J H, GE D Q, et al. Experimental study on surface subsidence monitoring with D-InSAR in mining area[J]. Journal of Northeastern University (Natural Science), 2005,26(8): 778-782.
[8] FERRETTI A, PRATI C, ROCCA F. Permanent scatters in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
[9] BERARIDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[10] GRZOVIC M, GHULAM A. Evaluation of land subsidence from underground coal mining using Time SAR (SBAS and PSI) in Springfield, Illinois, USA[J]. Natural Hazards, 2015, 79(3):1739-1751.
[11] 虎小强, 杨树文, 闫恒, 等. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023,35(1): 171-179. HU X Q, YANG S W, YAN H, et al. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023,35(1): 171-179.
[12] 林珲,马培峰,王伟玺. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报, 2017, 46(10): 1421-1433. LIN H, MA P F, WANG W X. Urban infrastructure health monitoring with spaceborne multi-temporal synthetic aperture tadar interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1421-1433.
[13] 郑跃, 谭凯, 邱江涛. 利用DInSAR技术获取高质量同震形变场的方法研究[J].大地测量与地球动力学, 2017,37(增4): 77-81. ZHENG Y, TAN K, QIU J T. Method of obtaining high quality coseismic deformation field by using DInSAR technology[J]. Journal of Geodesy and Geodynamics, 2017,37(Z4): 77-81.
[14] 高海英, 赵争, 章彭, 等. 基于MT-InSAR技术的滑坡体形变监测[J].北京测绘, 2020, 34(4): 485-489. GAO H Y, ZHAO Z, ZHANG P, et al. Landslide meformation monitoring based on InSAR and offset-tracking technology[J]. Beijing Surveying and Mapping, 2020, 34(4): 485-489.
[15] 夏磊凯,付五洲,黄其欢.永久散射体差分干涉测量和小基线集技术在常州地面沉降分析中的应用[J]. 勘察科学技术, 2016(6): 46-49. XIA L K, FU W Z, HUANG Q H. Application of PS-InSAR and SBAS technology in land subsidence monitoring analysing in Changzhou[J]. Site Investigation Science and Technology, 2016(6): 46-49.
[16] 张棫. SBAS-InSAR数据处理的自动化方法研究[D]. 南京:南京师范大学, 2016. ZHANG Y. Research on automatic method of SBAS-InSAR data[D]. Nanjing:Nanjing Normal University, 2016.
[17] 赵强. 基于InSAR时序分析的吉林省地表形变监测研究[D]. 吉林:吉林大学, 2019. ZHAO Q. Research on surface deformation monitoring in Jilin province based on InSAR time series analy-sis[D]. Jilin:Jilin University, 2019.
[18] 云烨, 吕孝雷, 付希凯, 等. 星载InSAR技术在地质灾害监测领域的应用[J].雷达学报, 2020, 9(1): 73-85. YUN Y, LU X L, FU X K, et al. Application of spaceborne interferometric synthetic aperture radar to geohazard monitoring[J]. Journal of Radars, 2020, 9(1): 73-85.
[19] 胡波, 汪汉胜. 用PSInSAR技术监测地面沉降研究[J]. 大地测量与地球动力学, 2010, 30(2): 34-39. HU B, WANG H S. Monitoring ground subsidence with permanent scatterers interferometry[J]. Journal of Geodesy and Geodynamics, 2010, 30(2): 34-39.
[20] 白泽朝, 靳国旺, 张红敏, 等. 天津地区Sentinel-1A雷达影像PSInSAR地面沉降监测[J]. 测绘科学技术学报, 2017, 34(3): 283-288. BAI Z C, JIN G W, ZHANG H M, et al. Subsidence monitoring of Tianjin using PSInSAR technique with Sentinel-1A[J]. Journal of Geomatics Science and Technology, 2017, 34(3): 283-288.

备注/Memo

备注/Memo:
收稿日期:2022-10-12;改回日期:2023-08-26。
基金项目:福建省地质矿产勘查开发局"遥感技术在福建地质灾害隐患早期识别中的应用研究(编号:20190505)"项目资助。
作者简介:黄德华,1977年生,男,高级工程师,本科,主要从事国土资源遥感应用技术与国土空间规划研究。Email:68675776@qq.com。
更新日期/Last Update: 1900-01-01