[1]王尚晓,牛晓楠,张洁,等.新安江流域2000—2021年NDVI时空变化特征及其影响因素分析[J].华东地质,2023,44(03):273-281.[doi:10.16788/j.hddz.32-1865/P.2023.03.003]
 WANG Shangxiao,NIU Xiaonan,ZHANG Jie,et al.Spatial and temporal variation features of NDVI and its influence factors in the Xin’an River Basin from 2000 to 2021[J].East China Geology,2023,44(03):273-281.[doi:10.16788/j.hddz.32-1865/P.2023.03.003]
点击复制

新安江流域2000—2021年NDVI时空变化特征及其影响因素分析()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年03期
页码:
273-281
栏目:
长江经济带资源与环境专辑
出版日期:
2023-09-28

文章信息/Info

Title:
Spatial and temporal variation features of NDVI and its influence factors in the Xin’an River Basin from 2000 to 2021
作者:
王尚晓1 牛晓楠1 张洁1 张明1 宗乐丽1 黄丁伶2
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 中国人民解放军陆军工程大学, 江苏 南京 210007
Author(s):
WANG Shangxiao1 NIU Xiaonan1 ZHANG Jie1 ZHANG Ming1 ZONG Leli1 HUANG Dingling2
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. Army Engineering University of PLA, Nanjing 210007, Jiangsu, China
关键词:
新安江流域时空变化NDVI趋势分析植被覆盖
Keywords:
Xin’an River Basinspatial and temporal variationNDVItrend analysisvegetation cover
分类号:
P237
DOI:
10.16788/j.hddz.32-1865/P.2023.03.003
摘要:
新安江流域是长三角地区重要的生态屏障,对该流域的植被覆盖情况进行监测并掌握其动态变化特征,对该区生态环境保护具有重要意义。以新安江流域为研究区,利用2000—2021年MOD13Q1数据,针对归一化植被指数(NDVI)的时空变化特征及其变化的持续性,使用Theil-Sen Median趋势分析、Mann-Kendall检验和Hurst指数等方法进行分析,探讨了NDVI的变化趋势与岩性建造、土地利用类型之间的关系。结果表明:二十多年以来,新安江流域的年平均NDVI为0.5~0.9,总体呈波动上升趋势,最大值出现在每年7—9月,最小值出现在每年1—3月,呈现"山地高,丘陵和平原较低"的分布特征。NDVI变化类型以改善型为主,改善型区域面积占比>70%,且以持续改善型为主,其中轻微改善型和明显改善型面积占比达85.71%。第四系和白垩纪红层分布区,NDVI严重退化和轻微退化占比较高,NDVI退化情况较严重的土地利用类型为建设用地、草地和耕地。该研究结果可反映新安江流域NDVI的时空变化特征,对于该区生态环境保护与建设具有一定指导意义。
Abstract:
As a pivotal ecological safeguard in the Yangtze River Delta, the Xin’an River Basin necessitates rigorous surveillance over its vegetation coverage to fully comprehend its shifting characteristics, which is of great significance to the local ecological environment protection. Taking Xin’an River Basin as a case, our study adopts MOD13Q1 data from 2000 to 2021 to unveil the spatial-temporal variability of the Normalized Difference Vegetation Index (NDVI) and its persistence of the change through the application of Theil-Sen Median trend analysis, the Mann-Kendall test and Hurst. Furthermore, the study decodes the relationship between NDVI trends, lithology construction, and diverse land usage types. The findings illustrated that the average annual NDVI within the Xin’an River Basin spanned from 0.5 to 0.9 for over two decades, exhibiting a generally upward ebb and flow trend. The pinnacle was recorded during July to September, while the low ebb occurred from January to March, reflecting a distinct "high in mountains, low in hills and plains" distribution characteristics. The NDVI changes are dominated by improvement type, especially the continuous improvement, accounting for over 70% of the local area, among which 85.71% of the area were slightly and significantly improved. Upon investigation of the Quaternary and Cretaceous red layer distributed area, the study found a higher proportion of substantial and slight NDVI degradation. Land types suffering pronounced NDVI degradation were construction land, grassland, and cropland, respectively. The conclusions drawn from our research elucidate the spatial-temporal NDVI fluctuations in the Xin’an River Basin, bearing substantial implications for ecological preservation and development in the region.

参考文献/References:

[1] LIN M, HOU L, QI Z, et al. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us sandy land during 2000-2019[J]. Ecological Indicators, 2022, 142:109164.
[2] WANG S, LI R, WU Y, et al. Vegetation dynamics and their response to hydrothermal conditions in Inner Mongolia, China[J]. Global Ecology and Conservation, 2022, 34:e02034.
[3] LI S, YANG S, LIU X, et al. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region, Central China[J]. Remote Sensing, 2015, 7(9):11163-11182.
[4] ROUSE J, HAAS R, SCHELL J, et al. Monitoring vegetation systems in the great plains with ERTS[C]//Third ERTS Symposium, NASA, Washington, DC, 1973:309-317.
[5] LENG S, HUETE A, CLEVERLY J, et al. Assessing the impact of extreme droughts on dryland vegetation by multi-satellite solar-induced chlorophyll fluorescence[J]. Remote Sensing, 2022, 14(7):1581-1599.
[6] ZENG J, ZHANG R, QU Y, et al. Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018[J]. Weather and Climate Extremes, 2022, 35:100412.
[7] DONG Y, YIN D, LI X, et al. Spatial-temporal evolution of vegetation NDVI in association with climatic, environmental and anthropogenic factors in the loess plateau, China during 2000-2015:Quantitative analysis based on geographical detector model[J]. Remote Sensing, 2021, 13(21):4380.
[8] CHU H, VENEVYSKY S, WU C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015[J]. Science of the Total Environment, 2019, 650:2051-2062.
[9] HUANG S, TANG L, HUPY J P, et al. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing[J]. Journal of Forestry Research, 2021, 32(1):1-6.
[10] 宗加权,白淑英,冯朝阳,等.基于连续时间序列NDVI数据的中国生态状况时空变化特征[J].水土保持研究, 2021, 28(1):132-138. ZONG J Q, BAI S Y, FENG C Y, et al. Spatial and temporal characteristics of ecological conditions in China based on continuous time series NDVI data[J]. Soil and Water Conservation Research, 2021, 28(1):132-138.
[11] JIA W, LIU M, YANG Y, et al. Estimation and uncertainty analyses of grassland biomass in Northern China:Comparison of multiple remote sensing data sources and modeling approaches[J]. Ecological Indicators, 2016, 60:1031-1040.
[12] 孙红雨,王长耀,牛铮.中国地表植被覆盖变化及其与气候因子关系--基于NOAA时间序列数据分析[J].遥感学报, 1998, 2(3):204-210. SUN H Y, WANG C Y, NIU Z. Changes in surface vegetation cover and its relationship with climate factors in China:An analysis based on NOAA time series data[J]. Journal of Remote Sensing, 1998, 2(3):204-210.
[13] FENSHOLT R, PROUD S R. Evaluation of earth observation based global long term vegetation trends-Comparing GIMMS and MODIS global NDVI time series[J]. Remote Sensing of Environment, 2012, 119:131-147.
[14] TIAN F, FENSHLOT R, VERBESSELT J, et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis[J]. Remote Sensing of Environment, 2015, 163:326-340.
[15] 袁丽华,蒋卫国,申文明,等.2000-2010年黄河流域植被覆盖的时空变化.生态学报,2013,33(24):7798-7806. YUAN L H, JIANG W G, SHEN W M,et al. Spatial and temporal variation of vegetation cover in the Yellow River Basin from 2000 to 2010. Journal of Ecology, 2013, 33(24):7798-7806.
[16] 刘咏梅,李京忠,夏露.黄土高原植被覆盖变化动态分析[J].西北大学学报(自然科学版), 2011, 41(6):1054-1058. LIU Y M, LI J Z, XIA L. Dynamic analysis of vegetation cover changes on the Loess Plateau[J]. Journal of Northwestern University (Natural Science Edition), 2011, 41(6):1054-1058.
[17] 徐勇,郑志威,郭振东,等. 2000-2020年长江流域植被NDVI动态变化及影响因素探测[J].环境科学, 2022, 43(7):3730-3740. XU Y, ZHENG Z W, GUO Z D, et al. Detection of NDVI dynamics of vegetation in the Yangtze River basin from 2000 to 2020 and the influencing factors[J]. Environmental Science, 2022, 43(7):3730-3740.
[18] 杨啸.基于时序NDVI的湖北省植被覆盖动态变化监测分析[J].长江流域资源与环境, 2013, 22(2):195-205. YANG X. Monitoring of vegetation cover dynamics in Hubei Province based on time-series NDVI[J]. Yangtze River Basin Resources and Environment, 2013, 22(2):195-205.
[19] HEIN L, DE RIDDER N, HIERNAUX P, et al. Desertification in the Sahel:Towards better accounting for ecosystem dynamics in the interpretation of remote sensing images[J]. Journal of Arid Environments, 2011, 75(11):1164-1172.
[20] 唐志敏,张晓东,张明,等.新安江流域土壤元素地球化学特征:来自岩石建造类型的约束[J].华东地质, 2023, 44(2):172-185. TANG Z M, ZHANG X D, ZHANG M, et al. Geochemical characteristics of soil elements in the Xin’anjiang River Basin:Constraints from rock construction types[J]. East China Geology, 2023, 44(2):172-185.
[21] 田福金,马青山,张明,等.基于主成分分析和熵权法的新安江流域水质评价[J].中国地质, 2023, 50(2):495-505. TIAN F J, MA Q S, ZHANG M, et al. Water quality evaluation of Xin’an River Basin based on principal component analysis and entropy weight method[J]. Geology of China,2023, 50(2):495-505.
[22] 曹芳芳,李雪,王东,等.新安江流域土地利用结构对水质的影响[J].环境科学,2013,34(7):2582-2587. CAO F F, LI X, WANG D, et al. Impact of land use structure on water quality in the Xin’an River Basin[J]. Environmental Science,2013,34(7):2582-2587.
[23] 天娜.黄山市旅游资源开发与可持续发展研究[D].芜湖:安徽师范大学,2014. TIAN N. Research on the development and sustainable development of tourism resources in Huangshan City[D]. Wuhu:Anhui Normal University,2014.
[24] 徐鹏炜,赵多.基于RS和GIS的杭州城市生态环境质量综合评价技术[J].应用生态学报,2006,17(6):1034-1038. XU P W, ZHAO D. RS-and GIS-based comprehensive evaluation technology for urban ecological environment quality in Hangzhou[J]. Journal of Applied Ecology,2006,17(6):1034-1038.
[25] 杭州发布经济社会发展报告城市经济实力大步跃升[N/OL]. 2021-07-01[2023-04-10] .http://zj.sina.com.cn/news/2021-07-01/detail-ikqcfnca4312917.shtml.
[26] 中国地质调查局南京地质调查中心.华东地区自然资源综合调查成果报告[R].南京:中国地质调查局南京地质调查中心, 2021:41-42. Nanjing Center,China Geological Survey. Report on the results of the comprehensive survey of natural resources in East China[R].Nanjing:Nanjing Center, China Geological Survey,2021:41-42.
[27] SANDHOLT I, RASMUSSEN K, ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79:213-224.
[28] FENG T, RASMUS F,JAN V, et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis[J]. Remote Sensing of Environment, 2015, 163:326-340.
[29] 侯西勇,应兰兰,高猛,等. 1998-2008年中国东部沿海植被覆盖变化特征[J].地理科学, 2010,30(5):735-741. HOU X Y, YING L L, GAO M, et al. Characteristics of vegetation cover change in eastern coastal China from 1998 to 2008[J]. Geoscience, 2010,30(5):735-741.

相似文献/References:

[1]唐志敏,张晓东,张明,等.新安江流域土壤元素地球化学特征:来自岩石建造类型的约束[J].华东地质,2023,44(02):172.[doi:10.16788/j.hddz.32-1865/P.2023.02.006]
 TANG Zhimin,ZHANG Xiaodong,ZHANG Ming,et al.Geochemical characteristics of soil elements in Xin’an River Basin: constraints from rock formation types[J].East China Geology,2023,44(03):172.[doi:10.16788/j.hddz.32-1865/P.2023.02.006]
[2]蔡磊,苏晶文,李状,等.新安江流域上游地区地下水化学特征及水文地球化学作用研究[J].华东地质,2023,44(03):262.[doi:10.16788/j.hddz.32-1865/P.2023.03.002]
 CAI Lei,SU Jingwen,LI Zhuang,et al.Study on the chemical characteristics and hydrogeochemistry process of groundwater in the upper reaches of Xin’an River Basin[J].East China Geology,2023,44(03):262.[doi:10.16788/j.hddz.32-1865/P.2023.03.002]

备注/Memo

备注/Memo:
收稿日期:2023-4-26;改回日期:2023-7-7。
基金项目:中国地质调查局"华东地区自然资源动态监测与风险评估(编号:DD20230103)"、"华东地区国土空间用途管制技术支撑与应用服务(编号:DD20230495)"和国家自然科学基金"武功山地区早古生代不同成分花岗质岩石的成因与地壳熔融机制研究(编号:42002058)"项目联合资助。
作者简介:王尚晓,1993年生,男,助理工程师,硕士,主要从事遥感自然资源调查、生态环境评价等工作。Email:wangshangxiao@hotmail.com。
更新日期/Last Update: 1900-01-01