[1]李亮,龚建师,王赫生,等.安徽省亳州市浅层地下水化学特征及成因机理[J].华东地质,2023,44(03):345-356.[doi:10.16788/j.hddz.32-1865/P.2023.03.010]
 LI Liang,GONG Jianshi,WANG Hesheng,et al.Hydrochemical characteristics and formation mechanism of shallow groundwater in Bozhou City, Anhui Province[J].East China Geology,2023,44(03):345-356.[doi:10.16788/j.hddz.32-1865/P.2023.03.010]
点击复制

安徽省亳州市浅层地下水化学特征及成因机理()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年03期
页码:
345-356
栏目:
长江经济带资源与环境专辑
出版日期:
2023-09-28

文章信息/Info

Title:
Hydrochemical characteristics and formation mechanism of shallow groundwater in Bozhou City, Anhui Province
作者:
李亮12 龚建师12 王赫生12 周锴锷12 朱春芳12 陶小虎12 叶永红12 檀梦皎12 张飞12
1. 中国地质调查局南京地质调查中心, 江苏 南京 210016;
2. 自然资源部流域生态地质过程重点实验室, 江苏 南京 210016
Author(s):
LI Liang12 GONG Jianshi12 WANG Hesheng12 ZHOU Kaie12 ZHU Chunfang12 TAO Xiaohu12 YE Yonghong12 TAN Mengjiao12 ZHANG Fei12
1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
2. Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, Jiangsu, China
关键词:
亳州市浅层地下水水化学特征成因机理
Keywords:
Bozhou Cityshallow groundwaterhydrochemical characteristicsformation mechanism
分类号:
P641.11
DOI:
10.16788/j.hddz.32-1865/P.2023.03.010
摘要:
安徽省亳州市浅层地下水是当地农业和生活用水的主要来源之一。为查明浅层地下水化学特征、解释其成因机理,文章综合运用描述性统计、相关性分析、离子比例系数和Piper三线图等方法,对143组浅层地下水样品进行分析和评价。研究结果表明亳州市浅层地下水化学类型复杂,主要阳离子含量依次为Na+>Mg2+>Ca2+,主要阴离子含量依次为HCO-3>SO2-4>Cl-;水化学特征主要受水岩相互作用、蒸发等因素影响,大气降水和人为因素总体影响相对较小;水岩相互作用中阳离子交换、硅酸盐和碳酸盐矿物风化溶解是主控因素;人为活动影响中,生活污染、农业活动大于工矿活动影响;地下水质量等级以Ⅳ类水为主,超Ⅲ类水主要影响因子为F-、Na+、总硬度和溶解性总固体(Total dissolved solids,TDS);灌溉水质量以中等为主,主要受Na+浓度过高影响。地下水化学成因机理研究为正在开展的淮河流域地下水资源调查评价和可持续开发利用提供了科学依据。
Abstract:
The present study is envisaged to investigate the chemical characteristics and formation mechanism of the shallow groundwater, one of the main sources for agricultural and domestic water in Bozhou City, Anhui Province. 143 samples of shallow groundwater were analyzed and evaluated by specifically using descriptive statistics, correlation analysis, ion ratio coefficient and Piper three-line diagram. The results reveal complicated chemical types of shallow groundwater in Bozhou City as follows: the contents of the cations and anions in the shallow groundwater are found to be in the order Na+> Mg2+> Ca2+ and HCO-3> SO2-4> Cl-, respectively. The hydrochemical characteristics are controlled by water-rock interaction, evaporation, and comparatively less influenced by the atmospheric precipitation and human factors. The exchange between the cations, weathering and dissolution of silicate and carbonate minerals dominate the water-rock interaction during the formation of shallow groundwater. In terms of human activity, the domestic pollution and agricultural activities are found to be more influential in hydrochemistry than industrial and mining activities. The ordinary grade of groundwater quality is IV. The key influencing factors in Ⅳ and Ⅴ grade water are F-, Na+, total hardness and total dissolved solids (TDS). The primary irrigation water is medium-quality, mainly affected by ultra-concentration of Na+. The research results on the mechanism of groundwater chemical genesis can lay a scientific basis for the investigation and evaluation of groundwater in the Huaihe River Basin and its sustainable exploitation and management.

参考文献/References:

[1] 董维红,苏小四,侯光才,等.鄂尔多斯白垩系地下水盆地地下水水化学类型的分布规律[J].吉林大学学报(地球科学版),2007,37(2):288-292. DONG W H, SU X S, HOU G C, et al. Distribution law of groundwater hydrochemical type in the Ordos Cretaceous artesian basin[J]. Journal of Jilin University, 2007,37(2):288-292.
[2] 苏小四,万玉玉,董维红,等.马莲河河水与地下水的相互关系:水化学和同位素证据[J].吉林大学学报(地球科学版), 2009, 39(6):1087-1094. SU X S, WAN Y Y, DONG W H, et al. Hydraulic relationship between Malianhe river and groundwater:Hydrogeochemical and isotopic evidences[J]. Journal of Jilin University, 2009,39(6):1087-1094.
[3] 唐玺雯,吴锦奎,薛丽洋,等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014, 35(1):131-142. TANG X W, WU J K, XUE L Y, et al. Major ion chemistry of surface water in the Xilin River basin and the possible controls[J]. Environmental Science, 2014,35(1):131-142.
[4] 孙跃,刘中刚,侯香梦,等.安徽合肥地区浅层地下水质量评价[J].华东地质, 2019, 40(1):74-80. SUN Y,LIU Z G,HOU X M,et al. Quality assessment for shallow groundwater in the Hefei area, Anhui Province[J]. East China Geology, 2019,40(1):74-80.
[5] 刘君,陈宗宇,王莹,等.大规模开采条件下我国北方区域地下水水化学变化特征[J].地球与环境, 2017, 45(4):408-414. LIU J,CHEN Z Y,WANG Y, et al. Evaluation of hydrochemical characteristics of regional groundwater systems in northern China under the conditions of large-scale exploitation[J]. Earth and Environment,2017, 45(4):408-414.
[6] 王雅欣,冯忠伦,邱庆泰,等.南水北调通水对梁济运河流域地下水化学成分影响[J].中国农村水利水电, 2015(11):110-114. WANG Y X, FENG Z L, QIU Q T, et al. An analysis of the influence of chemical composition of groundwater in the Liangji Canal Basin on south to north water tansfer project in operation[J]. China Rural Water and Hydropower, 2015(11):110-114.
[7] 蒋万军,赵丹,王广才,等.新疆吐-哈盆地地下水水文地球化学特征及形成作用[J].现代地质,2016, 30(4):825-833. JIANG W J, ZHAO D, WANG G C, et al. Hydro-geochemical characteristics and formation of groundwater in Tu-Ha Basin, Xinjiang[J]. Geoscience, 2016, 30(4):825-833.
[8] 彭玉怀,陈伟.安徽省淮北平原地下水环境演变调查评价报告[R].合肥:安徽省地质调查院, 2010. PENG Y H, CHEN W. Investigation and evaluation report on groundwater environment evolution in Huaibei Plain of Anhui Province[R]. Hefei:Geological Survey of Anhui Province, 2010.
[9] 中国地质调查局. DD2008-01地下水污染调查评价规范[S].2008. China Geological Survey. DD2008-01 Code for investigation and evaluation of groundwater pollu-tion[S]. 2008.
[10] 中国地质矿产部.DZ/T0064-93地下水质检验方法[S].1993. Ministry of Geology and Mineral Resources of China. DZ/T0064-93 Inspection method of groundwater quality[S]. 1993.
[11] 钱会,马致远.水文地球化学[M].北京:地质出版社, 2005. QIAN H,MA Z Y. Hydrogeochemistry[M]. Beijing:Geological Publishing House, 2005.
[12] 尹子悦,林青,徐绍辉.青岛市大沽河流域地下水水化学时空演化及影响因素分析[J].地质论评,2018, 64(4):1030-1043. YIN Z Y, LIN Q, XU S H. Spatial-temporal variations and controlling factors of groundwater hydrochemical characteristics in the Dagu River ba-sin[J]. Geological Review, 2018,64(4):1030-1043.
[13] MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987, 287(5):401-428.
[14] 文冬光,林良俊,孙继朝,等.中国东部主要平原地下水质量与污染评价[J].地球科学(中国地质大学学报), 2012, 37(2):220-228. WEN D G, LIN L J, SUN J C, et al. Groundwater quality and contamination assessmentin the main plains of eastern China[J]. Earth Science (Journal of China University of Geosciences), 2012,37(2):220-228.
[15] 邢怀学,李亮,葛伟亚,等.安徽省淮北市地下水中氟的空间分布特征及成因[J].地球学报, 2014, 35(2):163-168. XING H X, LI L, GE W Y, et al. Spatial distribution characteristics and origin of fluorine in groundwater of Huaibei City, Anhui Province[J].Acta Geoscientica Sinica, 2014,35(2):163-168.
[16] 邓春英.安徽省高含氟地下水成因及其分布特征[J].江淮水利科技,2006(2):22-24. DENG C Y. Origin and spatial distribution characteristics of fluorine in groundwater Anhui Province[J]. Jianghuai Water Resources Science and Technology, 2006(2):22-26.
[17] 姜凌,李佩成,郭建青.贺兰山西麓典型干旱区绿洲地下水水化学特征与演变规律[J].地球科学与环境学报, 2009, 31(3):285-290. JIANG L, LI P C, GUO J Q. Hydrochemical characteristics and evolution laws of groundwater in typical oasis of arid areas on the west of Helan Mountain[J]. Journal of Earth Sciences and Environment, 2009,31(3):285-290.
[18] 王水献,王云智,董新光.焉耆盆地浅层地下水埋深与TDS时空变异及水化学的演化特征[J].灌溉排水学报, 2007,15(5):90-93. WANG S X,WANG Y Z, DONG X G. The spatio-temporal variation of shallow groundwater TDS, depth and it’s evolvement characteristic of water chemistry in Yanqi basin[J]. Advances in Water Science, 2007,15(5):90-93.
[19] HE J, MA J, ZHANG P, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China[J]. Applied Geochemistry,2012, 27(4):866-878.
[20] 侯景儒,黄竟先.实用地质统计学[M].北京:地质出版社, 1998. HOU J R, HUANG J X. Practical Geostatistics[M]. Beijing:Geology Press, 1998.
[21] ZHU B, YANG X, RIOUAL P, et al. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry,2011, 26(8):1535-1548.
[22] 周迅,姜月华.氮、氧同位素在地下水硝酸盐污染研究中的应用[J].地球学报,2007,28(4):389-395. ZHOU X, JIANG Y H. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4):389-395.
[23] 卢丽,李文莉,裴建国,等.基于IsoSource的桂林寨底地下河硝酸盐来源定量研究[J].地球学报,2014, 35(2):248-254. LU L, LI W L, PEI J G, et al. A quantitative study of the sources of nitrate of Zhaidi undertround river in Guilin based on IsoSource[J]. Acta Geoscientica Sinica, 2014,35(2):248-254.
[24] 高坛光,康世昌,张强弓,等.青藏高原纳木错流域河水主要离子化学特征及来源[J].环境科学,2008,29(11):3009-3016. GAO T G, KANG S C, ZHANG Q G, et al. Major ionic features and their sources in the Nam Co basin over the Tibetan plateau[J]. Environmental Science, 2008, 29(11):3009-3016.
[25] 周嘉欣,丁永建,曾国雄,等.疏勒河上游地表水水化学主离子特征及其控制因素[J].环境科学,2014, 35(9):3315-3324. ZHOU J X, DING Y J, ZENG G X, et al. Major ion chemistry of surface water in the upper reach of Shule River basin and the possible controls[J]. Environmental Science, 2014,35(9):3315-3324.
[26] 张艳,吴勇,杨军,等.阆中市思依镇水化学特征及其成因分析[J].环境科学,2015, 36(9):3230-3237. ZHANG Y, WU Y, YANG J, et al. Hydrochemical characteristic and reasoning analysis in Siyi Town, Langzhong City[J]. Environmental Science, 2015,36(9):3230-3237.
[27] 许乃政,龚建师,檀梦皎,等.淮河流域高砷地下水的形成演化过程[J].中国地质,2021, 48(5):1418-1428. XU N Z, GONG J S, TAN M J, et al. Formation and evolution processes of high-araenic groundwater in Huaihe River Basin,China[J]. Geology in China, 2021,48(5):1418-1428.
[28] FAN B, ZHAO Z, TAO F, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin:A comparison among the upstream, midstream and downstream[J]. Journal of Asian Earth Sciences,2014, 96:17-26.
[29] HAN G, LIU C. Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karst-dominated terrain, Guizhou Province, China[J]. Chemical Geology,2004, 204(1/2):1-21.
[30] GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology,1999, 159(1):3-30.
[31] 张涛,何锦,李敬杰,等.蛤蟆通河流域地下水化学特征及控制因素[J].环境科学,2018, 39(11):4981-4990. ZHANG T, HE J, LI J J, et al. Najor ionic featrues and possible controls in the groundwater in the Hamatong River basin[J]. Environmental Science, 2018,39(11):4981-4990.
[32] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
[33] 张涛,蔡五田,李颖智,等.尼洋河流域水化学特征及其控制因素[J].环境科学, 2017, 38(11):4537-4545. ZHANG T, CAI W T, LI Y Z, et al. Najor ionic featrues and possible controls in the groundwater in the Hamatong River basin[J]. Environmental Science, 2017, 38(11):4537-4545.
[34] WU Y, GIBSON C E. Mechanisms controlling the water chemistry of small lakes in Northern Ireland[J]. Water Research,1996, 30(1):178-182.
[35] 左禹政,安艳玲,吴起鑫,等.贵州省都柳江流域水化学特征研究[J].中国环境科学,2017, 37(7):2684-2690. ZUO Y Z, AN Y L, WU Q X, et al. Study on the hydrochemical characteristics of Duliu River basin in Guizhou Province[J]. China Environmental Science,2017,37(7):2684-2690.
[36] 蒲俊兵,袁道先,蒋勇军,等.重庆岩溶地下河水文地球化学特征及环境意义[J].水科学进展,2010, 21(5):628-636. PU J B, YUAN D X, JIANG Y J, et al. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 2010, 21(5):628-636.
[37] SAMI K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa[J]. Journal of Hydrology, 1992(139):27-48.
[38] CHANG J, WANG G. Major ions chemistry of groundwater in the arid region of Zhangye Basin, northwestern China[J]. Environmental Earth Sciences, 2010, 61(3):539-547.
[39] NKOTAGU H. The groundwater geochemistry in a semi-arid, fractured crystalline basement area of Dodoma, Tanzania[J]. Journal of African Earth Sciences,1996, 23(4):593-605.
[40] 中华人民共和国国家质量监督检验检疫总局. GBT14848-2017地下水质量标准[S]. 2018. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China.GBT14848-2017 Standard for groundwater quality[S].2018.
[41] 颜晓龙,马杰,张玉洁,等.皖北地区浅层地下水水化学特征及水质评价--以宿州市某乡镇为例[J].河南科技,2022, 41(6):111-116. YAN X L, MA J, ZHANG Y J, et al. Hydrochemical characteristics and water quality assessment of the shallow groundwater of northern Anhui Province:A case study of a township of Suzhou City[J]. Henan Science and Techonlogy, 2022, 41(6):111-116.
[42] HEM J D. Study and interpretation of the chemical characteristics of natural water[J]. USA Geological Survey Water Supply Paper,1985:2245.
[43] 邢文乐,马瑞,孙自永,等.敦煌盆地地下水水化学特征及水质评价[J].地质科技情报,2016, 35(5):196-202. XING W L, MA R, SUN Z Y, et al. Hydrochemical characteristics and water quality assessment of groundwater in the Dunhuang Basin, Northwestern China[J]. Geological Science and Technology Information, 2016,35(5):196-202.

相似文献/References:

[1]孙 跃,刘中刚,侯香梦,等.安徽合肥地区浅层地下水质量评价[J].华东地质,2019,40(01):74.[doi:10.16788/j.hddz.32-1865/P.2019.01.010]
 SUN Yue,LIU Zhong-gang,HOU Xiang-meng,et al.Quality assessment for shallow groundwater in the Hefei area, Anhui Province[J].East China Geology,2019,40(03):74.[doi:10.16788/j.hddz.32-1865/P.2019.01.010]
[2]金阳,姜月华,周权平,等.丹阳市吕城地区浅层地下水演化特征及成因[J].华东地质,2021,42(04):475.[doi:10.16788/j.hddz.32-1865/P.2021.04.013]
 JIN Yang,JIANG Yuehua,ZHOU Quanping,et al.Evolution characteristics and genesis of shallow groundwater in Lücheng area of Danyang City[J].East China Geology,2021,42(03):475.[doi:10.16788/j.hddz.32-1865/P.2021.04.013]
[3]李亮,龚建师,周锴锷,等.基于物元可拓的河南省柘城县浅层地下水质量综合评价[J].华东地质,2022,43(03):355.[doi:10.16788/j.hddz.32-1865/P.2022.03.011]
 LI Liang,GONG Jianshi,ZHOU Kaie,et al.Application of Matter-Element and extension method in the comprehensive evaluation of groundwater environment quality of Zhecheng County, Henan Province[J].East China Geology,2022,43(03):355.[doi:10.16788/j.hddz.32-1865/P.2022.03.011]
[4]朱春芳,龚建师,陶小虎,等.淮河流域浅层地下水水化学特征10年对比分析及其环境变迁意义[J].华东地质,2023,44(03):282.[doi:10.16788/j.hddz.32-1865/P.2023.03.004]
 ZHU Chunfang,GONG Jianshi,TAO Xiaohu,et al.Comparison of the hydrochemical characteristics of shallow groundwater in the Huaihe River Basin during a ten-year period and its significance to environmental change[J].East China Geology,2023,44(03):282.[doi:10.16788/j.hddz.32-1865/P.2023.03.004]
[5]叶永红,龚建师,许乃政,等.涡河流域河南段浅层高碘地下水分布及成因[J].华东地质,2023,44(03):292.[doi:10.16788/j.hddz.32-1865/P.2023.03.005]
 YE Yonghong,GONG Jianshi,XU Naizheng,et al.Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin[J].East China Geology,2023,44(03):292.[doi:10.16788/j.hddz.32-1865/P.2023.03.005]

备注/Memo

备注/Memo:
收稿日期:2022-5-11;改回日期:2022-8-29。
基金项目:中国地质调查局"沙颍河—涡河流域水文地质调查(编号:DD20190354"和"长江下游及淮河流域水文地质与水资源调查监测(编号:D20221756)"项目联合资助。
作者简介:李亮,1985年生,男,高级工程师,硕士,主要从事水资源调查研究工作。Email:280283941@qq.com。
更新日期/Last Update: 1900-01-01