[1]刘林,陈琦,赵汝荣,等.人类活动驱动下的高碘地下水成因机制——以福州市为例[J].华东地质,2023,44(04):457-466.[doi:10.16788/j.hddz.32-1865/P.2023.04.009]
 LIU Lin,CHEN Qi,ZHAO Rurong,et al.The mechanism of high iodine groundwater driven by human activities: a case study of Fuzhou City[J].East China Geology,2023,44(04):457-466.[doi:10.16788/j.hddz.32-1865/P.2023.04.009]
点击复制

人类活动驱动下的高碘地下水成因机制——以福州市为例()
分享到:

《华东地质》[ISSN:2096-1871/CN:32-1865/P]

卷:
44
期数:
2023年04期
页码:
457-466
栏目:
其他
出版日期:
2023-12-27

文章信息/Info

Title:
The mechanism of high iodine groundwater driven by human activities: a case study of Fuzhou City
作者:
刘林123 陈琦4 赵汝荣4 周迅23 姜月华23 叶永红23
1. 中国地质科学院, 北京 100037;
2. 中国地质调查局南京地质调查中心, 江苏南京 210016;
3. 自然资源部流域生态地质过程重点实验室, 江苏南京 210016;
4. 福建省地质环境监测中心, 福建福州 350001
Author(s):
LIU Lin123 CHEN Qi4 ZHAO Rurong4 ZHOU Xun23 JIANG Yuehua23 YE Yonghong23
1. Chinese Academy of Geological Sciences, Beijing 100037, China;
2. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China;
3. Key Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing 210016, Jiangsu, China;
4. Geological Environment Monitoring Center of Fujian Province, Fuzhou 350001, Fujian, China
关键词:
高碘地下水成因机制人类活动福州市
Keywords:
high iodine waterformation mechanismshuman activitiesFuzhou City
分类号:
P641X523
DOI:
10.16788/j.hddz.32-1865/P.2023.04.009
摘要:
长期饮用高碘水会引起甲状腺功能障碍,威胁人体健康。文章以福州市富碘浅层地下水为研究对象,基于不同土地利用类型区的42组地下水样品,采用统计分析和离子比系数等方法,研究了地下水中碘的分布特征及高碘地下水成因机制。结果表明:福州市地下水中碘含量为0.008 0~0.52 mg/L,平均值为0.10 mg/L,呈现出内陆低-沿海高、山地低-平原高、农村低-城市高的分布特征。高碘地下水样品占19.1%,主要分布在闽江沿岸主城区、福清东部及平潭等滨海地区。第四纪形成的冲海积沉积物是区内地下水中碘富集的天然物质基础,还原的地下水环境、较长的滞留时间是利于地下水中碘富集的自然条件。高碘地下水的空间分布与人口密度高的地区高度耦合,揭示了人类活动排放的高碘生活污水是该地区高碘地下水形成的重要驱动因素。
Abstract:
Drinking high iodine water for a long time can cause thyroid dysfunction and pose a threat to human health. We selected high iodine groundwater in Fuzhou as the research object, and collected 42 groups of groundwater samples from different land use types. The spatial characteristics and genetic mechanisms of iodine in shallow groundwater were studied by using statistical analysis and ion ratio analysis. The results showed that the average content of iodine in local groundwater was 0.10 mg/L (0.008 0~0.52 mg/L). The distribution characteristics of iodine were inland low-coastal high, mountain low-plain high, and rural low-urban high. High iodine groundwater samples accounted for 19.1%, and were predominantly distributed in the main urban areas along the Minjiang River, eastern Fuqing and Pingtan coastal areas. The Quaternary alluvial and marine sediments provide a natural material sources for iodine enrichment in groundwater. Moreover, the reduced groundwater environment and long retention time are natural conditions of iodine enrichment in groundwater. As the spatial distribution of high iodine groundwater is highly correlated with the areas of high population density, it is suggested that high iodine domestic sewage discharged from human activities plays a significant role in the formation mechanism of high iodine groundwater.

参考文献/References:

[1] 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012,39(5): 8-15. XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2012,39(5): 8-15.
[2] 钱坤. 大同盆地高碘地下水系统中胶体影响下的碘富集机理研究[D]. 武汉:中国地质大学(武汉), 2017. QIAN K. Effects of colloids on iodine enrichment in groundwater of the Datong basin, China[D]. Wuhan:China University of Geosciences (Wuhan), 2017.
[3] 郑宝山, 王滨滨, 朱广伟,等. 大气与植物中碘的环境地球化学——综述与新的假说[J]. 地学前缘, 2001,8(2):359-365. ZHENG B S, WANG B B, ZHU G W, et al. Environmental geochemistry of iodine in atmosphere and plant—review and a hypothesis[J]. Earth Science Frontier, 2001, 8(2):359-365.
[4] 曾昭华.地下水中碘的形成及其控制因素[J].吉林地质,1999,18(2):30-33,72. ZENG S H. The formation of Ⅰ and its control factors[J]. Jilin Geology, 1999,18(2):30-33,72.
[5] WANG Y X, LI J X, MA T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2021(24):2895-2933.
[6] 国家质量监督检验检疫总局.GB/T 19380—2003水源性高碘地区和地方性高碘甲状腺肿病区的划定. 2003:1-8. General Administration of Quality Supervision, Inspection and Quarantine of The People’s Republic of China. GB/T 19380—2003 Determination and classificaton of the areas of high water iodine and the endemic areas of iodine excess goiter. 2003:1-8.
[7] 周海玲, 苏春利, 李俊霞. 地表灌溉对沉积含水层中碘迁移释放过程的影响[J]. 吉林大学学报(地球科学版), 2018,48(6): 1810-1820. ZHOU H L, SU C L, LI J X. Influence of surface irrigation practices on iodine mobilization in sedimentary aquifers[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6): 1810-1820.
[8] 薛江凯, 邓娅敏, 杜尧, 等. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学, 2021, 46(11): 4140-4149. XUE J K, DENG Y M, DU Y, et al. Molecular characterization of dissolved organic matter (DOM) in shallow aquifer along middle reach of Yangtze River and its implications for iodine enrichment[J]. Earth Science, 2021, 46(11): 4140-4149.
[9] 王妍妍, 马腾, 董一慧, 等. 内陆盆地区高碘地下水的成因分析:以内蒙古河套平原杭锦后旗为例[J]. 地学前缘, 2014,21(4): 66-73. WANG Y Y, MA T, DONG Y H, et al. The formation of inland-high-iodine groundwater: A case study in Hangjinhouqi, Hetao Plain[J]. Earth Science Frontiers, 2014, 21(4): 66-73.
[10] TAYLOR P N, ALBRECHT D, SCHOLZ A, et al. Global epidemiology of hyperthyroidism and hypothyroidism[J]. Nature reviews. Endocrinology, 2018, 14(5): 301-316.
[11] 孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114. SUN Y, ZHOU J L, YANG F Y, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Trim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.
[12] 罗义鹏, 邓娅敏, 杜尧, 等. 长江中游故道区高碘地下水分布与形成机理[J]. 地球科学, 2022, 47(2): 662-673. LUO Y P, DENG Y M, DU Y, et al. Occurrence and formation of high iodine groundwater in oxbows of the middle reach of the Yangtze River[J]. Earth Science, 2022, 47(2): 662-673.
[13] 王焰新, 李俊霞, 谢先军. 高碘地下水成因与分布规律研究[J]. 地学前缘, 2022, 29(3): 1-10. WANG Y X, LI J X, XIE X J. Genesis and occurrence of high iodine groundwater[J]. Earth Science Frontiers, 2022, 29(3): 1-10.
[14] 孙英, 周金龙, 梁杏, 等. 塔里木盆地南缘浅层高碘地下水的分布及成因:以新疆民丰县平原区为例[J]. 地球科学, 2021, 46(08): 2999-3011. SUN Y, ZHOU J L, LIANG X, et al. Distribution and genesis of shallow high-iodine groundwater in southern margin of Tarim Basin: A case study of plain area in Minfeng County, Xinjiang. Earth Science, 2021, 46(8): 2999-3011.
[15] 朱沉静, 李俊霞, 谢先军. 大同盆地地下水中碳硫同位素组成特征及其对碘迁移富集的指示[J]. 地球科学, 2021, 46(12): 4480-4491. ZHU C J, LI J X, XIE X J. Carbon and sulfur isotopic features and its implications for iodine mobilization in groundwater system at Datong Basin, Northern China[J]. Earth Science, 2021, 46(12): 4480-4491.
[16] 钱永, 张兆吉, 费宇红, 等. 华北平原饮用地下水碘分布及碘盐分区供应探讨[J]. 生态与农村环境学报, 2014, 30(1): 9-14. QIAN Y, ZHANG Z J, FEI Y H, et al. Spatial distribution of iodine in underground drinking water and discussion on region-specific supply of iodized salt in the North China Plain[J]. Journal of Ecology and Rural Environment, 2014, 30(1): 9-14.
[17] 张媛静, 张玉玺, 向小平, 等. 华北平原典型剖面地下水碘分布及对配碘影响[J]. 水资源保护, 2013,29(5): 7-9. ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution of iodine in typical sections in North China Plain and its influence on choice of edible salt[J]. Water Resources Protection, 2013, 29(5): 7-9.
[18] 李俊霞. 大同盆地高碘地下水系统地球化学研究[D]. 武汉:中国地质大学(武汉), 2014. LI J X. Geochemistry of high iodine groundwater system of Datong basin, northern china[D]. Wuhan:China University of Geosciences (Wuhan), 2014.
[19] FUGE R, JOHNSON C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.
[20] ABDELKADER B, ABDELHAK M, ABDESLAM K, et al. Estimation of pollution load of domestic sewage to Oued bechar (sw algeria) and its impact on the microbiological quality of groundwater[J]. Procedia Engineering, 2012, 33(3):261-267.
[21] 孙跃, 刘中刚, 侯香梦, 等. 安徽合肥地区浅层地下水质量评价[J]. 华东地质, 2019,40(1):74-80. SUN Y, LIU Z G, HOU X M, et al. Quality assessment for shallow groundwater in the Hefei area, Anhui Province[J]. East China Geology, 2019,40(1):74-80.
[22] 吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化三角洲地区高碘地下水赋存特征及驱动因素:以珠江三角洲为例[J]. 环境科学, 2022, 43(1): 339-348. L?X L, LIU J T, HAN Z T, et al. Geochemical characteristics and driving factors of high-iodine groundwater in rapidly urbanized delta areas: a case study of the Pearl River Delta[J]. Environmental Science, 2022, 43(1): 339-348.
[23] 周迅, 赵汝荣, 陈琦. 福州市浅层地下水的硝化机制[J].水资源保护,2015,33(4): 26-31,46. ZHOU X, ZHAO R R, CHEN Q. Nitrification of shallow groundwater in Fuzhou City, China[J]. Water Resources Protection, 2015, 33(4): 26-31, 46.
[24] 福建省地质调查研究院. 福建省区域地质志[R].福州:福建省地质调查研究院,2012:719-791. Fujian Institute of Geological Survey. Regional geology of Fujian Province[R]. Fuzhou:Fujian Institate of Geological Survey, 2012:719-791.
[25] 中国地质调查局. 水文地质手册(第二版)[M].北京: 地质出版社, 2012:504-516. China Geological Survey. Handbook of hydrogeology(2nd edition)[M].Beijing: Geological Publishing House, 2012: 504-516.
[26] 中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 14848—2017地下水质量标准. 2017:1-14. General Administration of Quality Supervision, Inspection and Quarantine of The People’s Republic of China, Standardization Administration of China. GB/T 14848—2017 Standard for groundwater quality. 2017:1-14.
[27] 刘立才, 陈鸿汉, 杨仪, 等. 苏锡常地区浅层地下水rNa/rCl特征及其成因初探[J]. 中国地质, 2000,35(1):117-122. LIU L C, CHEN H H, YANG Y, et al. Characteristics and genesis of rNa/rCl in shallow groundwater in the Suzhou-Wuxi-Changzhou region[J]. Geology in China, 2000, 35(1):117-122.
[28] 刘林, 周迅, 叶永红. 基于多元统计分析的浅层地下水受人为活动影响表征性指标筛选[J]. 资源调查与环境, 2014,35(4):305-310. LIU L, ZHOU X, YE Y H. Screening of characteristic indexes for shallow groundwater influenced by human activities using multivariate statistics[J]. Resources Survey and Environment, 2014, 35(4): 305-310.
[29] 钟佐燊. 地下水防污性能评价方法探讨[J]. 地学前缘, 2005, 12(A1):3-13. ZHONG Z S. A discussion of groundwater vulnerability assessment methods[J]. Earth Science Frontiers, 2005, 12(A1):3-13.
[30] ANDERSEN S, GUAN H, TENG W, et al. Speciation of iodine in high iodine groundwater in china associated with goiter and hypothyroidism[J]. Biological Trace Element Research, 2009, 128(2):95-103.
[31] 张媛静, 张玉玺, 向小平,等. 沧州地区地下水碘分布特征及其成因浅析[J]. 地学前缘, 2014, 21(4):59-65. ZHANG Y J, ZHANG Y X, XIANG X P, et al. Distribution characteristics and cause analysis of iodine in groundwater of Cangzhou Region. Earth Science Frontiers, 2014, 21(4):59-65.
[32] 赵振宏, 田文法. 沧州市浅层高碘地下水成因及分布规律的初步探讨[J]. 水文地质工程地质, 1988(6):48-51. ZHAO Z H, TIAN W F. Preliminary study on the genesis and distribution of shallow high iodine groundwater in Cangzhou City[J]. Hydrogeology & Engineering Geology, 1988(6):48-51.
[33] 张伟娜. 环境水体中碘的存在形态及其影响因素研究[D].吉林:吉林大学, 2012. ZHANG W N. Studies on speciation and influencing factors of iodine in environmental water system[D]. Jilin: Jilin University, 2012.
[34] 陈志辉,林曙光.闽东南沿海居民碘营养状况评价及对策[J].中华地方病学杂志,1997(4):210-213. CHEN Z H, LIN S G. Evaluation and countermeasure on iodine nutritional status of residents in south east coastal areas of Fujian province[J]. Chinese Journal of Cndemiology, 1997(4):210-213.
[35] 刘必端, 张琼. 福州市2011年居民碘盐与儿童尿碘监测结果分析[J]. 海峡预防医学杂志, 2012, 18(5):60-61. LIU B D, ZHANG Q. Analysis on surveillance results of iodized salt and urinary iodine of children in Fuzhou in 2011[J]. Strait Journal of Preventive Medicine, 2012, 18(5):60-61.
[36] 纪锋颖. 2008—2009年青岛市居民饮用水水碘和盐碘及8~10岁儿童尿碘调查结果分析[J]. 中华地方病学杂志, 2011, 30(6):663-666. JI F Y. Analysis of a survey on status of iodine content in drinking water, edible salt and urine of children aged 8~10 in Qingdao in 2008-2009[J]. Chinese Journal of Endemiology, 2011, 30(6):663-666.

相似文献/References:

[1]雷梦茹,徐光黎,张泰丽,等.金华市某岩质滑坡成因机制分析及发展趋势预测[J].华东地质,2021,42(04):398.[doi:10.16788/j.hddz.32-1865/P.2021.04.005]
 LEI Mengru,XU Guangli,ZHANG Taili,et al.Genetic mechanism analysis and development trend prediction of a rock landslide in Jinhua[J].East China Geology,2021,42(04):398.[doi:10.16788/j.hddz.32-1865/P.2021.04.005]
[2]叶永红,龚建师,许乃政,等.涡河流域河南段浅层高碘地下水分布及成因[J].华东地质,2023,44(03):292.[doi:10.16788/j.hddz.32-1865/P.2023.03.005]
 YE Yonghong,GONG Jianshi,XU Naizheng,et al.Distribution and genesis of high iodine shallow groundwater in Henan section of Guohe Basin[J].East China Geology,2023,44(04):292.[doi:10.16788/j.hddz.32-1865/P.2023.03.005]

备注/Memo

备注/Memo:
收稿日期:2022-12-22;改回日期:2023-06-07。
基金项目:中国地质调查局"长江下游及淮河流域水文地质与水资源调查监测(编号:DD20221756)"、"长江经济带地质资源环境综合评价(编号:DD20190260)"、"东南地区地下水污染调查与综合评价(编号:1212011121168)和"长江流域下游水文地质与水资源调查监测(编号:DD20221756)"项目联合资助。
作者简介:刘林,1986年生,男,高级工程师,博士研究生,主要从事地下水污染防治研究工作。Email:liulincgs@126.com。
通讯作者:周迅,1978年生,男,教授级高级工程师,博士,主要从事地下水污染防治研究工作。Email:weapon341@163.com。
更新日期/Last Update: 1900-01-01